985 resultados para alfa-SiAlON-SiC composite
Resumo:
The present work is aimed at developing a bioactive, corrosion resistant and anti bacterial nanostructured silver substituted hydroxyapatite/titania (AgHA/TiO(2)) composite coating in a single step on commercially pure titanium (Cp Ti) by plasma electrolytic processing (PEP) technique. For this purpose 2.5 wt% silver substituted hydroxyapatite (AgHA) nanoparticles were prepared by microwave processing technique and were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) methods. The as-synthesized AgHA particles with particle length ranging from 60 to 70 nm and width ranging from 15 to 20 nm were used for the subsequent development of coating on Cp Ti. The PEP treated Cp Ti showed both titania and AgHA in its coating and exhibited an improved corrosion resistance in 7.4 pH simulated body fluid (SBF) and 4.5 pH osteoclast bioresorbable conditions compared to untreated Cp Ti. The in vitro bioactivity test conducted under Kokubo SBF conditions indicated an enhanced apatite forming ability of PEP treated Cp Ti surface compared to that of the untreated Cp Ti. The Kirby-Bauer disc diffusion method or antibiotic sensitivity test conducted with the test organisms of Escherichia coli (E. coli) for 24 h showed a significant zone of inhibition for PEP treated Cp Ti compared to untreated Cp Ti. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Reduced graphene oxide-lead dioxide composite is formed when EGO coated surface is electrochemically reduced along with lead ions in the solution. This composite has been shown to be an excellent material for low level detection of arsenic. Various functional groups present on EGO, in a wide pH range of 2-11, are responsible for the favorable interaction between metal ion and the modified electrode surface and subsequent trace level detection. X-ray photoelectron spectroscopy and Raman spectroscopic techniques confirm the formation of composite and its composition. Thin layer of lead dioxide along with reduced exfoliated graphene oxide has been shown to be responsible for the enhanced activity of the surface. The detection limit of arsenic is found to be 10 nM. This study opens up the possibility of using the composites for sensing applications and possibly simultaneous detection of arsenic and lead. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Composite-patching on cracked/weak metallic aircraft structures improves structural integrity. A Boron Epoxy patch employed to repair a cracked Aluminum sheet is modeled employing 3D Finite Element Method (FEM). SIFs extracted using ''displacement extrapolation'' are used to measure the repair effectiveness. Two issues viz., patch taper and symmetry have been looked into.
Resumo:
This paper presents a study of the wave propagation responses in composite structures in an uncertain environment. Here, the main aim of the work is to quantify the effect of uncertainty in the wave propagation responses at high frequencies. The material properties are considered uncertain and the analysis is performed using Neumann expansion blended with Monte Carlo simulation under the environment of spectral finite element method. The material randomness is included in the conventional wave propagation analysis by different distributions (namely, the normal and the Weibul distribution) and their effect on wave propagation in a composite beam is analyzed. The numerical results presented investigates the effect of material uncertainties on different parameters, namely, wavenumber and group speed, which are relevant in the wave propagation analysis. The effect of the parameters, such as fiber orientation, lay-up sequence, number of layers, and the layer thickness on the uncertain responses due to dynamic impulse load, is thoroughly analyzed. Significant changes are observed in the high frequency responses with the variation in the above parameters, even for a small coefficient of variation. High frequency impact loads are applied and a number of interesting results are presented, which brings out the true effects of uncertainty in the high frequency responses. [DOI: 10.1115/1.4003945]
Resumo:
The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1-10 mu M with a detection limit of 0.18 and 0.20 mu M for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.
Resumo:
PEFCs employing Nafion-silica (Nafion-SiO2) and Nafion-mesoporous zirconium phosphate (Nafion-MZP) composite membranes are subjected to accelerated-durability test at 100 degrees C and 15% relative humidity (RH) at open-circuit voltage (OCV) for 50 h and performance compared with the PEFC employing pristine Nafion-1135 membrane. PEFCs with composite membranes sustain the operating voltage better with fluoride-ion-emission rate at least an order of magnitude lower than PEFC with pristine Nafion-1135 membrane. Reduced gas-crossover, fast fuel-cell-reaction kinetics and superior performance of the PEFCs with Nafion-SiO2 and Nafion-MZP composite membranes in relation to the PEFC with pristine Nafion-1135 membrane support the long-term operational usage of the former in PEFCs. An 8-cell PEFC stack employing Nafion-SiO2 composite membrane is also assembled and successfully operated at 60 degrees C without external humidification.
Resumo:
A flexible composite suitable for MHz frequency application has been developed by combining Fe3O4 and polyvinyl alcohol (PVA). The loss factor and the permeability have been evaluated. At an optimum weight percentage of Fe3O4 in the PVA matrix, the frequency at which the loss factor gives a minimum shifts to the MHz region. The loss factor has been found to be lower by one order of magnitude at 70 MHz compared to the presently used nickel zinc ferrite. The Henkel plot and the Cole-Cole plot have been obtained for the understanding of the high magnetic permeability and the low loss factor. (C) 2012 American Institute of Physics. doi:10.1063/1.3672867]
Resumo:
In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles-polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 degrees C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of similar to 18.6 dB in 26.5-40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.
Guided Wave based Damage Detection in a Composite T-joint using 3D Scanning Laser Doppler Vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Resumo:
Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.
Resumo:
This work focuses on the formulation of an asymptotically correct theory for symmetric composite honeycomb sandwich plate structures. In these panels, transverse stresses tremendously influence design. The conventional 2-D finite elements cannot predict the thickness-wise distributions of transverse shear or normal stresses and 3-D displacements. Unfortunately, the use of the more accurate three-dimensional finite elements is computationally prohibitive. The development of the present theory is based on the Variational Asymptotic Method (VAM). Its unique features are the identification and utilization of additional small parameters associated with the anisotropy and non-homogeneity of composite sandwich plate structures. These parameters are ratios of smallness of the thickness of both facial layers to that of the core and smallness of 3-D stiffness coefficients of the core to that of the face sheets. Finally, anisotropy in the core and face sheets is addressed by the small parameters within the 3-D stiffness matrices. Numerical results are illustrated for several sample problems. The 3-D responses recovered using VAM-based model are obtained in a much more computationally efficient manner than, and are in agreement with, those of available 3-D elasticity solutions and 3-D FE solutions of MSC NASTRAN. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.
Resumo:
The ternary alloy Ni-W-P and its WS2 nanocomposite coatings were successfully obtained on low-carbon steel using the electroless plating technique. The sodium tungstate (Na2WO4) concentration in the bath was varied to obtain Ni-W-P deposits containing various Ni and P contents. WS2 composite was obtained with a suitable concentration of Na2WO4 in Ni-P coating. These deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX) studies. The corrosion behavior was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies in 3.5 wt % NaCl solutions, and the corrosion rates of the coatings for Ni-P, Ni-W-P, and Ni-W-P-WS2 were found to be 2.571 x 10(-5), 8.219 x 10(-7), and 7.986 x 10(-7) g/h, respectively. An increase in the codeposition of alloying metal tungsten (W) enhanced the corrosion resistance and microhardness and changed the structure and morphology of the deposits. Incorporation of WS2 nanoparticles to Ni-W-P alloy coating reduced the coefficient of friction from 0.16 to 0.11 and also helped in improving the corrosion resistance of the coating further.