950 resultados para aging process


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As user involvement becomes a necessary part of the product development process, various ways of accessing users' latent needs have been developed and studied. Reviews of literatures in user involvement and product development have revealed that accessing users' latent needs and transferring them into design process could be facilitated by effectively implementing user-designer collaboration during the early stage of the design process. In this paper, various types of user-designer collaboration were observed and then distinct characteristics of user-designer collaboration were classified into three categories. 1) Passive objectivity, 2) workplace democratisation, and 3) shared contexts were observed as strategies for better user-designer collaboration, which have been employed in the area of user-centred design, user participatory design and design for experiencing. Based on the literature review, this paper proposed a basic collaboration mechanism between the users and the designers during the early stage of the design process and then discussed how its mechanism will help to describe the interactions between the users and the designers during the user involvement sessions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business Process Management (BPM) has emerged as a popular management approach in both Information Technology (IT) and management practice. While there has been much research on business process modelling and the BPM life cycle, there has been little attention given to managing the quality of a business process during its life cycle. This study addresses this gap by providing a framework for organisations to manage the quality of business processes during different phases of the BPM life cycle. This study employs a multi-method research design which is based on the design science approach and the action research methodology. During the design science phase, the artifacts to model a quality-aware business process were developed. These artifacts were then evaluated through three cycles of action research which were conducted within three large Australian-based organisations. This study contributes to the body of BPM knowledge in a number of ways. Firstly, it presents a quality-aware BPM life cycle that provides a framework on how quality can be incorporated into a business process and subsequently managed during the BPM life cycle. Secondly, it provides a framework to capture and model quality requirements of a business process as a set of measurable elements that can be incorporated into the business process model. Finally, it proposes a novel root cause analysis technique for determining the causes of quality issues within business processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To meet new challenges of Enterprise Systems that essentially go beyond the initial implementation, contemporary organizations seek employees with business process experts with software skills. Despite a healthy demand from the industry for such expertise, recent studies reveal that most Information Systems (IS) graduates are ill-equipped to meet the challenges of modern organizations. This paper shares insights and experiences from a course that is designed to provide a business process centric view of a market leading Enterprise System. The course, designed for both undergraduate and graduate students, uses two common business processes in a case study that employs both sequential and explorative exercises. Student feedback gained through two longitudinal surveys across two phases of the course demonstrates promising signs of the teaching approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method which aims at increasing the efficiency of enterprise system implementations. First, we argue that existing process modeling languages that feature different degrees of abstraction for different user groups exist and are used for different purposes which makes it necessary to integrate them. We describe how to do this using the meta models of the involved languages. Second, we argue that an integrated process model based on the integrated meta model needs to be configurable and elaborate on the enabling mechanisms. We introduce a business example using SAP modeling techniques to illustrate the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an experiment undertaken to investigate intuitive interaction, particularly in older adults. Previous work has shown that intuitive interaction relies on past experience, and has also suggested that older people demonstrate less intuitive uses and slower times when completing set tasks with various devices. Similarly, this experiment showed that past experience with relevant products allowed people to use the interfaces of two different microwaves more quickly, although there were no significant differences between the different microwaves. It also revealed that certain aspects of cognitive decline related to aging, such as central executive function, have more impact on time, correct uses and intuitive uses than chronological age. Implications of these results and further work in this area are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mainstream business process modelling techniques promote a design paradigm wherein the activities to be performed within a case, together with their usual execution order, form the backbone of a process model, on top of which other aspects are anchored. This paradigm, while eective in standardised and production-oriented domains, shows some limitations when confronted with processes where case-by-case variations and exceptions are the norm. In this thesis we develop the idea that the eective design of exible process models calls for an alternative modelling paradigm, one in which process models are modularised along key business objects, rather than along activity decompositions. The research follows a design science method, starting from the formulation of a research problem expressed in terms of requirements, and culminating in a set of artifacts that have been devised to satisfy these requirements. The main contributions of the thesis are: (i) a meta-model for object-centric process modelling incorporating constructs for capturing exible processes; (ii) a transformation from this meta-model to an existing activity-centric process modelling language, namely YAWL, showing the relation between object-centric and activity-centric process modelling approaches; and (iii) a Coloured Petri Net that captures the semantics of the proposed meta-model. The meta-model has been evaluated using a framework consisting of a set of work ow patterns. Moreover, the meta-model has been embodied in a modelling tool that has been used to capture two industrial scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining sensitivity and specificity of a postoperative infection surveillance process is a difficult undertaking. Because postoperative infections are rare, vast numbers of negative results exist, and it is often not reasonable to assess them all. This study gives a methodological framework for estimating sensitivity and specificity by taking only a small sample of the number of patients who test negative and comparing their findings to the reference or “gold standard” rather than comparing the findings of all patients to the gold standard. It provides a formula for deriving confidence intervals for these estimates and a guide to minimum requirements for sampling results.