927 resultados para adaptive systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key driver of Australian sweetpotato productivity improvements and consumer demand has been industry adoption of disease-free planting material systems. On a farm isolated from main Australian sweetpotato areas, virus-free germplasm is annually multiplied, with subsequent 'pathogen-tested' (PT) sweetpotato roots shipped to commercial Australian sweetpotato growers. They in turn plant their PT roots into specially designated plant beds, commencing in late winter. From these beds, they cut sprouts as the basis for their commercial fields. Along with other intense agronomic practices, this system enables Australian producers to achieve worldRSQUOs highest commercial yields (per hectare) of premium sweetpotatoes. Their industry organisation, ASPG (Australian Sweetpotato Growers Inc.), has identified productivity of mother plant beds as a key driver of crop performance. Growers and scientists are currently collaborating to investigate issues such as catastrophic plant beds losses; optimisation of irrigation and nutrient addition; rapidity and uniformity of initial plant bed harvests; optimal plant bed harvest techniques; virus re-infection of plant beds; and practical longevity of plant beds. A survey of 50 sweetpotato growers in Queensland and New South Wales identified a substantial diversity in current plant bed systems, apparently influenced by growing district, scale of operation, time of planting, and machinery/labour availability. Growers identified key areas for plant bed research as: optimising the size and grading specifications of PT roots supplied for the plant beds; change in sprout density, vigour and performance through sequential cuttings of the plant bed; optimal height above ground level to cut sprouts to maximise commercial crop and plant bed performance; and use of structures and soil amendments in plant bed systems. Our ongoing multi-disciplinary research program integrates detailed agronomic experiments, grower adaptive learning sites, product quality and consumer research, to enhance industry capacity for inspired innovation and commercial, sustainable practice change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) monitor a net- work with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS’s rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Artificial immune system can be used to generate schedules in changing environments and it has been proven to be more robust than schedules developed using a genetic algorithm. Good schedules can be produced especially when the number of the antigens is increased. However, an increase in the range of the antigens had somehow affected the fitness of the immune system. In this research, we are trying to improve the result of the system by rescheduling the same problem using the same method while at the same time maintaining the robustness of the schedules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the Artificial Immune System (AIS)technology to the collaborative Filtering (CF)technology when we build the movie recommendation system. Two different affinity measure algorithms of AIS, Kendall tau and Weighted Kappa, are used to calculate the correlation coefficients for this movie recommendation system. From the testing we think that Weighted Kappa is more suitable than Kendall tau for movie problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Picocyanobacteria are important phytoplankton and primary producers in the ocean. Although extensive work has been conducted for picocyanobacteria (i.e. Synechococcus and Prochlorococcus) in coastal and oceanic waters, little is known about those found in estuaries like the Chesapeake Bay. Synechococcus CB0101, an estuarine isolate, is more tolerant to shifts in temperature, salinity, and metal toxicity than coastal and oceanic Synechococcus strains, WH7803 and WH7805. Further, CB0101 has a greater sensitivity to high light intensity, likely due to its adaptation to low light environments. A complete and annotated genome sequence of CB0101 was completed to explore its genetic capacity and to serve as a basis for further molecular analysis. Comparative genomics between CB0101, WH7803, and WH7805 show that CB0101 contains more genes involved in regulation, sensing, and stress response. At the transcript and protein level, CB0101 regulates its metabolic pathways, transport systems, and sensing mechanisms when nitrate and phosphate are limited. Zinc toxicity led to oxidative stress and a global down regulation of photosystems and the translation machinery. From the stress response studies seven chromosomal toxin-antitoxin (TA) genes, were identified in CB0101, which led to the discovery of TA genes in several marine Synechococcus strains. The activation of the relB2/relE1 TA system allows CB0101 to arrest its growth under stressful conditions, but the growth arrest is reversible, once the stressful environment dissipates. The genome of CB0101 contains a relatively large number of genomic island (GI) genes compared to known marine Synechococcus genomes. Interestingly, a massive shutdown (255 out of 343) of GI genes occurred after CB0101 was infected by a lytic phage. On the other hand, phage-encoded host-like proteins (hli, psbA, ThyX) were highly expressed upon phage infection. This research provides new evidence that estuarine Synechococcus like CB0101 have inherited unique genetic machinery, which allows them to be versatile in the estuarine environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre-processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection-diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed discretization error by clustering the nodes in the computational mesh where the analytical solution undergoes rapid variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z_2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Doutor em Design, apresentada na Universidade de Lisboa - Faculdade de Arquitetura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conjugate gradient is the most popular optimization method for solving large systems of linear equations. In a system identification problem, for example, where very large impulse response is involved, it is necessary to apply a particular strategy which diminishes the delay, while improving the convergence time. In this paper we propose a new scheme which combines frequency-domain adaptive filtering with a conjugate gradient technique in order to solve a high order multichannel adaptive filter, while being delayless and guaranteeing a very short convergence time.