942 resultados para Xenophanes, ca. 570-ca. 478 B.C.
Resumo:
A study of the distribution, dispersal and composition of surficial sediments in the Strait of Georgia, B.C., has resulted in the understanding of basic sedimentologic conditions within this area. The Strait of Georgia is: a long, narrow, semi-enclosed basin with a restricted circulation and a single, main, sediment source. The Fraser. River supplies practically all the sediment now being deposited in the Strait of Georgia, the bulk of it during the spring and summer freshet. This river is building a delta into the Strait from the east side near the south end. Ridges of Pleistocene deposits within the Strait and Pleistocene material around the margins, like bedrock exposures, provide local sources of sediment of only minor importance. Rivers and streams other than the Fraser contribute insignificant quantities of sediment to the Strait. Sandy sediments are concentrated in the vicinity of the delta, and in the area to the south and southeast. Mean grain size decreases from the delta toward the northwest along the axis of the Strait, and basinwards from the margins. Silts and clays are deposited in deep water west and north of the delta front, and in deep basins northwest of the delta. Poorly sorted sediments containing a gravel component are located near tidal passes, on the Vancouver Island shelf area, on ridge tops within the Strait, and with sandy sediments at the southeastern end of the study area. The Pleistocene ridges are areas of non-deposition, having at most a thin veneer of modern mud on their crests and upper flanks. The southeastern end of the study area contains a thick wedge of shandy sediment which appears to be part of an earlier delta of the Fraser River. Evidence suggests that it is now a site of active submarine erosion. Sediments throughout the Strait are compositionally extremely similar, with-Pleistocene deposits of the Fraser River drainage basin providing the principal, heterogeneous source. Gravels and coarse sands are composed primarily of lithic fragments, dominantly of dioritic to granodloritlc composition. Sand fractions exhibit increasing simplicity of mineralogy with decreasing grain-size. Quartz, felspar, amphibole and fine-grained lithic fragments are the dominant constituents of the finer sand grades. Coarse and medium silt fractions have compositions similar to the fine sands. Fine silts show an increase in abundance of phyllosilicate material, a feature even more evident in the clay-size fractions on Montmorillonite, illite, chlorite, quartz and feldspar are the main minerals in the coarse clay fraction, with minor mixed-layer clays and kaolinite. The fine clay fraction is dominated by montmorillonite, with lesser amounts of illite and chlorite. The sediments have high base-exchange capacities, related to a considerable content of montmorillonite. Magnesium is present in exchange positions in greater quantity in Georgia Strait sediments than in sediments from the Fraser River, indicating a preferential uptake of this element in the marine environment. Manganese nodules collected from two localities in the Strait imply slow sediment accumulation rates at these sites. Sedimentation rates on and close to the delta, and in the deep basins to the northwest, are high.
Resumo:
Chemical (Sr, Mg) and isotopic (d18O, 87Sr/86Sr) compositions of calcium carbonate veins (CCV) in the oceanic basement were determined to reconstruct changes in Sr/Ca and Mg/Ca of seawater in the Cenozoic. We examined CCV from ten basement drill sites in the Atlantic and Pacific, ranging in age between 165 and 2.3 Ma. Six of these sites are from cold ridge flanks in basement <46 Ma, which provide direct information about seawater composition. CCV of these young sites were dated, using the Sr isotopic evolution of seawater. For the other sites, temperature-corrections were applied to correct for seawater-basement exchange processes. The combined data show that a period of constant/low Sr/Ca (4.46 - 6.22 mmol/mol) and Mg/Ca (1.12 - 2.03 mol/mol) between 165 and 30 Ma was followed by a steady increase in Mg/Ca ratios by a factor of three to modern ocean composition. Mg/Ca - Sr/Ca relations suggest that variations in hydrothermal fluxes and riverine input are likely causes driving the seawater compositional changes. However, additional forcing may be involved in explaining the timing and magnitude of changes. A plausible scenario is intensified carbonate production due to increased alkalinity input to the oceans from silicate weathering, which in turn is a result of subduction-zone recycling of CO2 from pelagic carbonate formed after the Cretaceous slow-down in ocean crust production rate.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan de la ville du Cap de Bonne Esperance et environs, par M.B.C.T. en Décembre 1770 ; Croisey sc. It was published in 1770. Scale [ca. 1:24,360]. Covers Cape Town, South Africa. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'WGS 1984 UTM 34S' coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, built-up areas and selected buildings, fortification, ground cover, and more. Relief shown by hachures. Depths shown by soundings. Includes index. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Pollen and macrofossils were analyzed at two sites above today's treeline (or tree limit) in the Swiss Central Alps (Gouillé Loéré, 2503 m a.s.l., and Lengi Egga, 2557 m a.s.l.) to test two contrasting hypotheses about the natural formation of timberline (the upper limit of closed forest) in the Alps. Our results revealed that Pinus cembra--Larix decidua forests near timberline were rather closed between 9000 and 2500 B.C. (9600-4000 14C yr BP), when timberline fluctuations occurred within a belt 100-150 m above today's tree limit. The treeline ecocline above timberline was characterized by the mixed occurrence of tree, shrub, dwarf-shrub, and herbaceous species, but it did not encompass more than 100-150 altitudinal meters. The uppermost limit reached by timberline and treeline during the Holocene was ca. 2420 and 2530 m, respectively, i.e., about 120 to 180 m higher than today. Between 3500 and 2500 B.C. (4700-4000 14C yr BP) timberline progressively sank by about 300 m, while treeline was lowered only ca. 100 m. This change led to an enlargement of the treeline-ecocline belt (by ca. 300 m) after 2500 B.C. (4000 14C yr BP). Above the treeline ecocline, natural meadows dominated by dwarf shrubs (e.g., Salix herbacea) and herbaceous species (e.g., Helianthemum, Taraxacum, Potentialla, Leontodon t., Cerastium alpinum t., Cirsium spinosissimum, Silene exscapa t., and Saxifraga stellaris) have been present since at least 11,000 cal yr ago. In these meadows tree and tall shrub species (>0.5 m) never played a major role. These results support the conventional hypothesis of a narrow ecocline with rather sharp upper timberline and treeline boundaries and imply that today's treeless alpine communities in the Alps are close to a natural stage. Pollen (percentages and influx), stomata, and charcoal data may be useful for determining whether or not a site was treeless. Nevertheless, a reliable and detailed record of past local vegetation near and above timberline is best achieved through the inclusion of macrofossil analysis.
Resumo:
A multi-proxy palaeoecological investigation including pollen, plant macrofossil, radiocarbon and sedimentological analyses, was performed on a small mountain lake in the Eastern Pyrenees. This has allowed the reconstruction of: (1) the vegetation history of the area based on five pollen diagrams and eight AMS14C dates and (2) the past lake-level changes, based on plant macrofossil, lithological and pollen analysis of two stratigraphical transects correlated by pollen analysis. The palaeolake may have appeared before the Younger Dryas; the lake-level was low and the vegetation dominated by cold steppic grasslands. The lake-level rose to its highest level during the Holocene in the Middle Atlantic (at ca. 5060±45 b.p.). Postglacial forests (Quercetum mixtum and Abieto-Fagetum) developed progressively in the lower part of the valley, while dense Pinus uncinata forests rapidly invaded the surroundings of the mire and remained the dominant local vegetation until present. The observed lowering of the lake levels during the Late Atlantic and the Subboreal (from 5060 ± B.P. to 3590±40 b.p.) was related to the overgrowth of the mire. The first obvious indications of anthropogenic disturbances of the vegetation are recorded at the Atlantic/Subboreal boundary as a reduction in the forest component, which has accelerated during the last two millennia.
Resumo:
Bibliographical footnotes.
Resumo:
Mode of access: Internet.
Resumo:
ICCU,
Resumo:
Mode of access: Internet.