907 resultados para Well water
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
This paper has two principal aims: first, to unravel some of the arguments mobilized in the controversial privatization debate, and second, to review the scale and nature of private sector provision of water and sanitation in Africa, Asia and Latin America. Despite being vigorously promoted in the policy arena and having been implemented in several countries in the South in the 1990s, privatization has achieved neither the scale nor benefits anticipated. In particular, the paper is pessimistic about the role that privatization can play in achieving the Millennium Development Goals of halving the number of people without access to water and sanitation by 2015. This is not because of some inherent contradiction between private profits and the public good, but because neither publicly nor privately operated utilities are well suited to serving the majority of low-income households with inadequate water and sanitation, and because many of the barriers to service provision in poor settlements can persist whether water and sanitation utilities are publicly or privately operated. This is not to say that well-governed localities should not choose to involve private companies in water and sanitation provision, but it does imply that there is no justification for international agencies and agreements to actively promote greater private sector participation on the grounds that it can significantly reduce deficiencies in water and sanitation services in the South.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
The water vapour continuum is characterised by absorption that varies smoothly with wavelength, from the visible to the microwave. It is present within the rotational and vibrational–rotational bands of water vapour, which consist of large numbers of narrow spectral lines, and in the many ‘windows’ between these bands. The continuum absorption in the window regions is of particular importance for the Earth’s radiation budget and for remote-sensing techniques that exploit these windows. Historically, most attention has focused on the 8–12 μm (mid-infrared) atmospheric window, where the continuum is relatively well-characterised, but there have been many fewer measurements within bands and in other window regions. In addition, the causes of the continuum remain a subject of controversy. This paper provides a brief historical overview of the development of understanding of the continuum and then reviews recent developments, with a focus on the near-infrared spectral region. Recent laboratory measurements in near-infrared windows, which reveal absorption typically an order of magnitude stronger than in widely used continuum models, are shown to have important consequences for remote-sensing techniques that use these windows for retrieving cloud properties.
Resumo:
This paper presents the development of an export coefficient model to characterise the rates and sources of P export from land to water in four reservoir systems located in a semi-arid rural region in southern of Portugal. The model was developed to enable effective management of these important water resource systems under the EU Water Framework Directive. This is the first time such an approach has been fully adapted for the semi-arid systems typical of Mediterranean Europe. The sources of P loading delivered to each reservoir from its catchment were determined and scenario analysis was undertaken to predict the likely impact of catchment management strategies on the scale of rate of P loading delivered to each water body from its catchment. The results indicate the importance of farming and sewage treatment works/collective septic tanks discharges as the main contributors to the total diffuse and point source P loading delivered to the reservoirs, respectively. A reduction in the total P loading for all study areas would require control of farming practices and more efficient removal of P from human wastes prior to discharge to surface waters. The scenario analysis indicates a strategy based solely on reducing the agricultural P surplus may result in only a slow improvement in water quality, which would be unlikely to support the generation of good ecological status in reservoirs. The model application indicates that a reduction of P-inputs to the reservoirs should first focus on reducing P loading from sewage effluent discharges through the introduction of tertiary treatment (P-stripping) in all major residential areas. The fully calibrated export coefficient modelling approach transferred well to semi-arid regions, with the only significant limitation being the availability of suitable input data to drive the model. Further studies using this approach in semi-arid catchments are now needed to increase the knowledge of nutrient export behaviours in semi-arid regions.
Resumo:
Bangladesh has experienced the largest mass poisoning of a population in history owing to contamination of groundwater with naturally occurring inorganic arsenic. Prolonged drinking of such water risks development of diseases and therefore has implications for children's cognitive and psychological development. This study examines the effect of arsenic contamination of tubewells, the primary source of drinking water at home, on the learning outcome of school-going children in rural Bangladesh using recent nationally representative data on secondary school children. We unambiguously find a negative and statistically significant correlation between mathematics scores and arsenic-contaminated drinking tubewells at home, net of the child's socio-economic status, parental background and school specific unobserved correlates of learning. Similar correlations are found for an alternative measure of student achievement and subjective well-being (i.e. self-reported measure of life satisfaction), of the student. We conclude by discussing the policy implication of our findings in the context of the current debate over the adverse effect of arsenic poisoning on children.
Resumo:
1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.
Resumo:
Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological path-ways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.
Resumo:
Until recently, pollution control in rural drainage basins of the UK consisted solely of water treatment at the point of abstraction. However, prevention of agricultural pollution at source is now a realistic option given the possibility of financing the necessary changes in land use through modification of the Common Agricultural Policy. This paper uses a nutrient export coefficient model to examine the cost of land-use change in relation to improvement of water quality. Catchment-wide schemes and local protection measures are considered. Modelling results underline the need for integrated management of entire drainage basins. A wide range of benefits may accrue from land-use change, including enhanced habitats for wildlife as well as better drinking water.
Resumo:
Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes.
Resumo:
Surface-based GPS measurements of zenith path delay (ZPD) can be used to derive vertically integrated water vapor (IWV) of the atmosphere. ZPD data are collected in a global network presently consisting of 160 stations as part of the International GPS Service. In the present study, ZPD data from this network are converted into IWV using observed surface pressure and mean atmospheric water vapor column temperature obtained from the European Centre for Medium-Range Weather Forecasts' (ECMWF) operational analyses (OA). For the 4 months of January/July 2000/2001, the GPS-derived IWV values are compared to the IWV from the ECMWF OA, with a special focus on the monthly averaged difference (bias) and the standard deviation of daily differences. This comparison shows that the GPS-derived IWV values are well suited for the validation of OA of IWV. For most GPS stations, the IWV data agree quite well with the analyzed data indicating that they are both correct at these locations. Larger differences for individual days are interpreted as errors in the analyses. A dry bias in the winter is found over central United States, Canada, and central Siberia, suggesting a systematic analysis error. Larger differences were mainly found in mountain areas. These were related to representation problems and interpolation difficulties between model height and station height. In addition, the IWV comparison can be used to identify errors or problems in the observations of ZPD. This includes errors in the data itself, e.g., erroneous outlier in the measured time series, as well as systematic errors that affect all IWV values at a specific station. Such stations were excluded from the intercomparison. Finally, long-term requirements for a GPS-based water vapor monitoring system are discussed.
Resumo:
This paper examines the significance of seventeen later Bronze Age wells found during construction at Swalecliffe, in north-east Kent. The unusual depth of the features made for exceptional preservation of wooden structural elements, including steps and revetments, demonstrating rare evidence for woodworking and woodmanship. Extensive biological remains facilitated environmental reconstruction, and a lengthy dendrochronological sequence corroborates the internationally important Flag Fen chronology. Dendrochronological and radiocarbon dates demonstrate around 500 years of seemingly continuous use and replacement of wells. Votive deposits and apparatus used for water collection provide glimpses of small-scale ritual and domestic activities. The highly unusual concentration of wells is compared to contemporary sites regionally and elsewhere.
Resumo:
Remote sensing observations often have correlated errors, but the correlations are typically ignored in data assimilation for numerical weather prediction. The assumption of zero correlations is often used with data thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative approach to dealing with observation error correlations is needed. In this article, we consider several approaches to approximating observation error correlation matrices: diagonal approximations, eigendecomposition approximations and Markov matrices. These approximations are applied in incremental variational assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate correlation structure in the observation error covariance matrix than to incorrectly assume error independence. Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include error correlation structure in a variational data assimilation algorithm.
Resumo:
An urban energy and water balance model is presented which uses a small number of commonly measured meteorological variables and information about the surface cover. Rates of evaporation-interception for a single layer with multiple surface types (paved, buildings, coniferous trees and/or shrubs, deciduous trees and/or shrubs, irrigated grass, non-irrigated grass and water) are calculated. Below each surface type, except water, there is a single soil layer. At each time step the moisture state of each surface is calculated. Horizontal water movements at the surface and in the soil are incorporated. Particular attention is given to the surface conductance used to model evaporation and its parameters. The model is tested against direct flux measurements carried out over a number of years in Vancouver, Canada and Los Angeles, USA. At all measurement sites the model is able to simulate the net all-wave radiation and turbulent sensible and latent heat well (RMSE = 25–47 W m−2, 30–64 and 20–56 W m−2, respectively). The model reproduces the diurnal cycle of the turbulent fluxes but typically underestimates latent heat flux and overestimates sensible heat flux in the day time. The model tracks measured surface wetness and simulates the variations in soil moisture content. It is able to respond correctly to short-term events as well as annual changes. The largest uncertainty relates to the determination of surface conductance. The model has the potential be used for multiple applications; for example, to predict effects of regulation on urban water use, landscaping and planning scenarios, or to assess climate mitigation strategies.
Resumo:
In winter, brine rejection from sea ice formation and export in the Weddell Sea, offshore of Filchner-Ronne Ice Shelf (FRIS), leads to the formation of High Salinity Shelf Water (HSSW). This dense water mass enters the cavity beneath FRIS by sinking southward down the sloping continental shelf towards the grounding line. Melting occurs when the HSSW encounters the ice shelf, and the meltwater released cools and freshens the HSSW to form a water mass known as Ice Shelf Water (ISW). If this ISW rises, the ‘ice pump’ is initiated (Lewis and Perkin, 1986), whereby the ascending ISW becomes supercooled and deposits marine ice at shallower locations due to the pressure increase in the in-situ freezing temperature. Sandh¨ager et al. (2004) were able to infer the thickness patterns of marine ice deposits at the base of FRIS (figure 1), so the primary aim of this work is to try to understand the ocean flows that determine these patterns. The plume model we use to investigate ISW flow is described fully by Holland and Feltham (accepted) so only a relatively brief outline is presented here. The plume is simulated by combining a parameterisation of ice shelf basal interaction and a multiplesize- class frazil dynamics model with an unsteady, depth-averaged reduced-gravity plume model. In the model an active region of ISW evolves above and within an expanse of stagnant ambient fluid, which is considered to be ice-free and has fixed profiles of temperature and salinity. The two main assumptions of the model are that there is a well-mixed layer underneath the ice shelf and that the ambient fluid outside the plume is stagnant with fixed properties. The topography of the ice shelf that the plume flows beneath is set to the FRIS ice shelf draft calculated by Sandh¨ager et al. (2004) masked with the grounding line from the Antarctic Digital Database (ADD Consortium, 2002). To initiate the plumes, we assume that the intrusion of dense HSSW initially causes melting at the points on the grounding line where the glaciological tributaries feeding FRIS go afloat.