975 resultados para Web Semantico semantic open data geoSPARQL


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To meet the increasing demands of the complex inter-organizational processes and the demand for continuous innovation and internationalization, it is evident that new forms of organisation are being adopted, fostering more intensive collaboration processes and sharing of resources, in what can be called collaborative networks (Camarinha-Matos, 2006:03). Information and knowledge are crucial resources in collaborative networks, being their management fundamental processes to optimize. Knowledge organisation and collaboration systems are thus important instruments for the success of collaborative networks of organisations having been researched in the last decade in the areas of computer science, information science, management sciences, terminology and linguistics. Nevertheless, research in this area didn’t give much attention to multilingual contexts of collaboration, which pose specific and challenging problems. It is then clear that access to and representation of knowledge will happen more and more on a multilingual setting which implies the overcoming of difficulties inherent to the presence of multiple languages, through the use of processes like localization of ontologies. Although localization, like other processes that involve multilingualism, is a rather well-developed practice and its methodologies and tools fruitfully employed by the language industry in the development and adaptation of multilingual content, it has not yet been sufficiently explored as an element of support to the development of knowledge representations - in particular ontologies - expressed in more than one language. Multilingual knowledge representation is then an open research area calling for cross-contributions from knowledge engineering, terminology, ontology engineering, cognitive sciences, computational linguistics, natural language processing, and management sciences. This workshop joined researchers interested in multilingual knowledge representation, in a multidisciplinary environment to debate the possibilities of cross-fertilization between knowledge engineering, terminology, ontology engineering, cognitive sciences, computational linguistics, natural language processing, and management sciences applied to contexts where multilingualism continuously creates new and demanding challenges to current knowledge representation methods and techniques. In this workshop six papers dealing with different approaches to multilingual knowledge representation are presented, most of them describing tools, approaches and results obtained in the development of ongoing projects. In the first case, Andrés Domínguez Burgos, Koen Kerremansa and Rita Temmerman present a software module that is part of a workbench for terminological and ontological mining, Termontospider, a wiki crawler that aims at optimally traverse Wikipedia in search of domainspecific texts for extracting terminological and ontological information. The crawler is part of a tool suite for automatically developing multilingual termontological databases, i.e. ontologicallyunderpinned multilingual terminological databases. In this paper the authors describe the basic principles behind the crawler and summarized the research setting in which the tool is currently tested. In the second paper, Fumiko Kano presents a work comparing four feature-based similarity measures derived from cognitive sciences. The purpose of the comparative analysis presented by the author is to verify the potentially most effective model that can be applied for mapping independent ontologies in a culturally influenced domain. For that, datasets based on standardized pre-defined feature dimensions and values, which are obtainable from the UNESCO Institute for Statistics (UIS) have been used for the comparative analysis of the similarity measures. The purpose of the comparison is to verify the similarity measures based on the objectively developed datasets. According to the author the results demonstrate that the Bayesian Model of Generalization provides for the most effective cognitive model for identifying the most similar corresponding concepts existing for a targeted socio-cultural community. In another presentation, Thierry Declerck, Hans-Ulrich Krieger and Dagmar Gromann present an ongoing work and propose an approach to automatic extraction of information from multilingual financial Web resources, to provide candidate terms for building ontology elements or instances of ontology concepts. The authors present a complementary approach to the direct localization/translation of ontology labels, by acquiring terminologies through the access and harvesting of multilingual Web presences of structured information providers in the field of finance, leading to both the detection of candidate terms in various multilingual sources in the financial domain that can be used not only as labels of ontology classes and properties but also for the possible generation of (multilingual) domain ontologies themselves. In the next paper, Manuel Silva, António Lucas Soares and Rute Costa claim that despite the availability of tools, resources and techniques aimed at the construction of ontological artifacts, developing a shared conceptualization of a given reality still raises questions about the principles and methods that support the initial phases of conceptualization. These questions become, according to the authors, more complex when the conceptualization occurs in a multilingual setting. To tackle these issues the authors present a collaborative platform – conceptME - where terminological and knowledge representation processes support domain experts throughout a conceptualization framework, allowing the inclusion of multilingual data as a way to promote knowledge sharing and enhance conceptualization and support a multilingual ontology specification. In another presentation Frieda Steurs and Hendrik J. Kockaert present us TermWise, a large project dealing with legal terminology and phraseology for the Belgian public services, i.e. the translation office of the ministry of justice, a project which aims at developing an advanced tool including expert knowledge in the algorithms that extract specialized language from textual data (legal documents) and whose outcome is a knowledge database including Dutch/French equivalents for legal concepts, enriched with the phraseology related to the terms under discussion. Finally, Deborah Grbac, Luca Losito, Andrea Sada and Paolo Sirito report on the preliminary results of a pilot project currently ongoing at UCSC Central Library, where they propose to adapt to subject librarians, employed in large and multilingual Academic Institutions, the model used by translators working within European Union Institutions. The authors are using User Experience (UX) Analysis in order to provide subject librarians with a visual support, by means of “ontology tables” depicting conceptual linking and connections of words with concepts presented according to their semantic and linguistic meaning. The organizers hope that the selection of papers presented here will be of interest to a broad audience, and will be a starting point for further discussion and cooperation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O surgir da World Wide Web providenciou aos utilizadores uma série de oportunidades no que diz respeito ao acesso a dados e informação. Este acesso tornou-se um ato banal para qualquer utilizador da Web, tanto pelo utilizador comum como por outros mais experientes, tanto para obter informações básicas, como outras informações mais complexas. Todo este avanço tecnológico permitiu que os utilizadores tivessem acesso a uma vasta quantidade de informação, dispersa pelo globo, não tendo, na maior parte das vezes, a informação qualquer tipo de ligação entre si. A necessidade de se obter informação de interesse relativamente a determinado tema, mas tendo que recorrer a diversas fontes para obter toda a informação que pretende obter e comparar, torna-se um processo moroso para o utilizador. Pretende-se que este processo de recolha de informação de páginas web seja o mais automatizado possível, dando ao utilizador a possibilidade de utilizar algoritmos e ferramentas de análise e processamento automáticas, reduzindo desta forma o tempo e esforço de realização de tarefas sobre páginas web. Este processo é denominado Web Scraping. Neste trabalho é descrita uma arquitetura de sistema de web scraping automático e configurável baseado em tecnologias existentes, nomeadamente no contexto da web semântica. Para tal o trabalho desenvolvido analisa os efeitos da aplicação do Web Scraping percorrendo os seguintes pontos: • Identificação e análise de diversas ferramentas de web scraping; • Identificação do processo desenvolvido pelo ser humano complementar às atuais ferramentas de web scraping; • Design duma arquitetura complementar às ferramentas de web scraping que dê apoio ao processo de web scraping do utilizador; • Desenvolvimento dum protótipo baseado em ferramentas e tecnologias existentes; • Realização de experiências no domínio de aplicação de páginas de super-mercados portugueses; • Analisar resultados obtidos a partir destas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

WWW is a huge, open, heterogeneous system, however its contents data is mainly human oriented. The Semantic Web needs to assure that data is readable and “understandable” to intelligent software agents, though the use of explicit and formal semantics. Ontologies constitute a privileged artifact for capturing the semantic of the WWW data. Temporal and spatial dimensions are transversal to the generality of knowledge domains and therefore are fundamental for the reasoning process of software agents. Representing temporal/spatial evolution of concepts and their relations in OWL (W3C standard for ontologies) it is not straightforward. Although proposed several strategies to tackle this problem but there is still no formal and standard approach. This work main goal consists of development of methods/tools to support the engineering of temporal and spatial aspects in intelligent systems through the use of OWL ontologies. An existing method for ontology engineering, Fonte was used as framework for the development of this work. As main contributions of this work Fonte was re-engineered in order to: i) support the spatial dimension; ii) work with OWL Ontologies; iii) and support the application of Ontology Design Patterns. Finally, the capabilities of the proposed approach were demonstrated by engineering time and space in a demo ontology about football.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfilment of the requirements for the degree of Master in Computer Science

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Master’s Degree Dissertation

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based in internet growth, through semantic web, together with communication speed improvement and fast development of storage device sizes, data and information volume rises considerably every day. Because of this, in the last few years there has been a growing interest in structures for formal representation with suitable characteristics, such as the possibility to organize data and information, as well as the reuse of its contents aimed for the generation of new knowledge. Controlled Vocabulary, specifically Ontologies, present themselves in the lead as one of such structures of representation with high potential. Not only allow for data representation, as well as the reuse of such data for knowledge extraction, coupled with its subsequent storage through not so complex formalisms. However, for the purpose of assuring that ontology knowledge is always up to date, they need maintenance. Ontology Learning is an area which studies the details of update and maintenance of ontologies. It is worth noting that relevant literature already presents first results on automatic maintenance of ontologies, but still in a very early stage. Human-based processes are still the current way to update and maintain an ontology, which turns this into a cumbersome task. The generation of new knowledge aimed for ontology growth can be done based in Data Mining techniques, which is an area that studies techniques for data processing, pattern discovery and knowledge extraction in IT systems. This work aims at proposing a novel semi-automatic method for knowledge extraction from unstructured data sources, using Data Mining techniques, namely through pattern discovery, focused in improving the precision of concept and its semantic relations present in an ontology. In order to verify the applicability of the proposed method, a proof of concept was developed, presenting its results, which were applied in building and construction sector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Driven by concerns about rising energy costs, security of supply and climate change a new wave of Sustainable Energy Technologies (SET’s) have been embraced by the Irish consumer. Such systems as solar collectors, heat pumps and biomass boilers have become common due to government backed financial incentives and revisions of the building regulations. However, there is a deficit of knowledge and understanding of how these technologies operate and perform under Ireland’s maritime climate. This AQ-WBL project was designed to address both these needs by developing a Data Acquisition (DAQ) system to monitor the performance of such technologies and a web-based learning environment to disseminate performance characteristics and supplementary information about these systems. A DAQ system consisting of 108 sensors was developed as part of Galway-Mayo Institute of Technology’s (GMIT’s) Centre for the Integration of Sustainable EnergyTechnologies (CiSET) in an effort to benchmark the performance of solar thermal collectors and Ground Source Heat Pumps (GSHP’s) under Irish maritime climate, research new methods of integrating these systems within the built environment and raise awareness of SET’s. It has operated reliably for over 2 years and has acquired over 25 million data points. Raising awareness of these SET’s is carried out through the dissemination of the performance data through an online learning environment. A learning environment was created to provide different user groups with a basic understanding of a SET’s with the support of performance data, through a novel 5 step learning process and two examples were developed for the solar thermal collectors and the weather station which can be viewed at http://www.kdp 1 .aquaculture.ie/index.aspx. This online learning environment has been demonstrated to and well received by different groups of GMIT’s undergraduate students and plans have been made to develop it further to support education, awareness, research and regional development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aquest projecte s'emmarca dintre la idea de la Web Semàntica. A la primera part introdueix progressivament al tema de la Web Semàntica fins arribar a establir la necessitat de tenir SGBDs. La segon part explota algun dels SGBDs estudiats per realitzar una aplicació web que permeti mostrar alguna aplicació de la Web Semàntica.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En aquest treball s'explica el concepte de Web Semàntica, junt amb la seva estructura i els diferents termes relacionats amb aquesta idea. A més, es fa especial atenció al paper dels sistemes gestors de bases de dades en aquest camp, tenint en compte sobretot el nivell de compatibilitat que ofereixen aquests per a tracta dades en notació RDF, basada en el llenguatge XML.