896 resultados para Weather Conditions
Resumo:
The influence of atmospheric gases and tropospheric phenomena becomes more relevant at frequencies within the THz band (100 GHz to 10 THz), severely affecting the propagation conditions. The use of radiosoundings in propagation studies is a well established measurement technique in order to collect information about the vertical structure of the atmosphere, from which gaseous and cloud attenuation can be estimated with the use of propagation models. However, some of these prediction models are not suitable to be used under rainy conditions. In the present study, a method to identify the presence of rainy conditions during radiosoundings is introduced, with the aim of filtering out these events from yearly statistics of predicted atmospheric attenuation. The detection procedure is based on the analysis of a set of parameters, some of them extracted from synoptical observations of weather (SYNOP reports) and other derived from radiosonde observations (RAOBs). The performance of the method has been evaluated under different climatic conditions, corresponding to three locations in Spain, where colocated rain gauge data were available. Rain events detected by the method have been compared with those precipitations identified by the rain gauge. The pertinence Received 26 June 2012, Accepted 31 July 2012, Scheduled 15 August 2012 * Corresponding author: Gustavo Adolfo Siles Soria (gsiles@grc.ssr.upm.es). 258 Siles et al. of the method is discussed on the basis of an analysis of cumulative distributions of total attenuation at 100 and 300 GHz. This study demonstrates that the proposed method can be useful to identify events probably associated to rainy conditions. Hence, it can be considered as a suitable algorithm in order to filter out this kind of events from annual attenuation statistics.
Resumo:
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
National meteorological offices are largely concerned with synoptic-scale forecasting where weather predictions are produced for a whole country for 24 hours ahead. In practice, many local organisations (such as emergency services, construction industries, forestry, farming, and sports) require only local short-term, bespoke, weather predictions and warnings. This thesis shows that the less-demanding requirements do not require exceptional computing power and can be met by a modern, desk-top system which monitors site-specific ground conditions (such as temperature, pressure, wind speed and direction, etc) augmented with above ground information from satellite images to produce `nowcasts'. The emphasis in this thesis has been towards the design of such a real-time system for nowcasting. Local site-specific conditions are monitored using a custom-built, stand alone, Motorola 6809 based sub-system. Above ground information is received from the METEOSAT 4 geo-stationary satellite using a sub-system based on a commercially available equipment. The information is ephemeral and must be captured in real-time. The real-time nowcasting system for localised weather handles the data as a transparent task using the limited capabilities of the PC system. Ground data produces a time series of measurements at a specific location which represents the past-to-present atmospheric conditions of the particular site from which much information can be extracted. The novel approach adopted in this thesis is one of constructing stochastic models based on the AutoRegressive Integrated Moving Average (ARIMA) technique. The satellite images contain features (such as cloud formations) which evolve dynamically and may be subject to movement, growth, distortion, bifurcation, superposition, or elimination between images. The process of extracting a weather feature, following its motion and predicting its future evolution involves algorithms for normalisation, partitioning, filtering, image enhancement, and correlation of multi-dimensional signals in different domains. To limit the processing requirements, the analysis in this thesis concentrates on an `area of interest'. By this rationale, only a small fraction of the total image needs to be processed, leading to a major saving in time. The thesis also proposes an extention to an existing manual cloud classification technique for its implementation in automatically classifying a cloud feature over the `area of interest' for nowcasting using the multi-dimensional signals.
Building up resilience of construction sector SMEs and their supply chains to extreme weather events
Resumo:
Wider scientific community now accept that the threat of climate change as real and thus acknowledge the importance of implementing adaptation measures in a global context. In the UK , the physical effects of climate change are likely to be directly felt in the form of extreme weather events, which are predicted to escalate in number and severity in future under the changing climatic conditions. Construction industry; which consists of supply chains running across various other industries, economies and regions, will also be affected due to these events. Thus, it is important that the construction organisations are well prepared to withstand the effects of extreme weather events not only directly affecting their organisations but also affecting their supply chains which in turn might affect the organisation concerned. Given the fact that more than 99% of construction sector businesses are SMEs, the area can benefit significantly from policy making to improve SME resilience and coping capacity. This paper presents the literature review and synthesis of a doctoral research study undertaken to address the issue of extreme weather resilience of construction sector SMEs and their supply chains. The main contribution of the paper to both academia and practitioners is a synthesis model that conceptualises the factors that enhances resilience of SMEs and their supply chains against extreme weather events. This synthesis model forms the basis of a decision making framework that will enable SMEs to both reduce their vulnerability and enhance their coping capacity against extreme weather. The value of this paper is further extended by the overall research design that is set forth as the way forward.