1000 resultados para Waleis, Raúl


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivo do presente trabalho foi estudar a influência dos diferentes sistemas de fios (trama, teia de base e teia da argola) no desempenho dos tecidos de felpos, no que concerne às propriedades de absorção, capilaridade e libertação de humidade. Para este estudo usaram-se quatro tipos de combinações destes sistemas de fios, para a mesma estrutura de tecidos de felpo, na teia de base utilizou-se somente fios de Tencel®, na teia de argola e da trama varou-se a composição dos fios entre fios de algodão e de Tencel®. Os resultados obtidos demonstram que quando a utilização fios de Tencel® em qualquer dos sistemas (trama ou teia da argola) favorece a capacidade de difusão de líquidos na estrutura, a utilização de fios de algodão na teia de argola favorece a capacidade de absorção.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pedido de patente provisório nº 20151000053763, data de pedido 18 março 2015, em parceria com a Empresa Barcelcom, S. A..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is intended to evaluate the density and the mechanical, acoustic and thermal properties of compression moulded plates composed of granulate from electrical cables wastes. Those cable wastes are the insulation part from the electric cables, and are composed of PVC, PE, EMP and PEX rubber. After these materiais lose their initial properties and cease to be useful as insulation material, due to safety requirements, it is possible to reuse them into new applications like industrial or playground floorings, as sound insulation material to be applied in walls or floors, or to dampen vibrations from equipments. Recovering electric cable waste has been a major concern to the European Commission due to its leveis of toxicity when incineration and land fill ing is the solution to dispose this material. Such as the European Commission's study for DG Xl[1] suggested that recycling may be the most favourable future waste management option.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a study on the properties of chicken plumes from the poultry industry, namely feathers. Studies conducted include length, diameter and weight of chicken feathers to 42 days old. Initial results indicate that the central and lower feather areas present very interesting properties and characteristics turning these materials suitable for various applications, including in clothing, thermal and acoustic insulation in buildings, cimenticious and polymeric matrices reinforcements, among others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of experimental investigation on the aqueous dispersion behaviour of micro crystalline cellulose (MCC) prepared using Pluronic F-127. For this purpose, different concentrations (0.5-3.0 wt.%) of MCC were dispersed in water with the help of ultrasonication technique using various concentrations of Pluronic F-127. The homogeneity of the suspensions and agglomerations were characterized by optical and transmission electron microscopy and the concentration of well dispersed MCC was measured using UV-Vis spectroscopy. Also, the suspensions were subjected to high speed ultracentrifugation at 3000 rpm and observed visually for sedimentation and subsequently, concentration was calculated using UV-Vis, in order to assess the long term stability of the suspensions. Based on these experiments, optimum concentration of Pluronic to disperse different MCC concentrations has been suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since they present a negative Poisson's radio, auxetic materials are different from conventional ones. These materials present an unusual behaviour: when stretched (elongated in the longitudinal direction), their cross-section is increased. There are two different ways to obtain auxetic materials: through polymers or through structures. It is possible to affirm that those obtained through fibrous structures are very recent and that few authors have been dedicated to their study. The main objective of this work is to study the effect of the negative Poisson

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compares the physicochemical characteristics of six species from Brazilian Malvaceae family with natural fibers of recognized applicability in the industry. The objective of the present study is present the physicochemical characterization of six Brazilian vegetal fibers: Sida rhombifolia L.; Sida carpinifolia L. f.; Sidastrum paniculatum (L.) Fryxell; Sida cordifolia L.; Malvastrum coromandelianum (L.) Gurck; Wissadula subpeltata (Kuntze) R.E.Fries. Respectively the two first species are from Brazilian Atlantic Forest biome and the four remaining from Brazilian Cerrado biome, despite of present in other regions of the plane

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the first attempt of characterizing several physical, mechanical and chemical properties of Quiscal fibres, usually used by the native communities in Chile and on investigations concerning the influence of atmospheric dielectric barrier discharge (DBD) plasma treatment on various properties such as diameter and linear density, percent of impurity, moisture regain, chemical elements and groups, thermal degradation, surface morphology, among others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercial stents, especially metallic ones, present several disadvantages, and this gives rise to the necessity of producing or coating stents with different materials, like natural polymers, in order to improve their biocompatibility and minimize the disadvantages of metallic ones. This review paper discusses some applications of natural-based polymers in stents, namely polylactic acid (PLA) for stent development and chitosan for biocompatible coatings of stents . Furthermore, some effective stent functionalization techniques will be discussed, namely Layer by Layer (LBL) technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work intends to evaluate the mechanical properties of eco-composites reinforced with natural fiber fabrics in different fibrous arrangements, with a thermoset matrix of natural origin. When integrated by hand lay-up process, the composites obtained present excellent mechanical characteristics combined with environment friendly features, being able to be used in various industrial sectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural Fiber Composites based on polypropylene have gained increasing interest over the past two decades, both in the scientific and industry communities. In this study, the mechanical properties of polypropylene (PP)/natural fiber composites were studied and compared with those of polypropylene reinforced by glass fiber. Flax and jute woven fabrics have been used. PP/glass fiber composites showed better performance in terms of tensile properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, novel auxetic structure has been developed from braided composites produced from basalt fiber. The paper reported the auxetic and tensile behavior of the structures produced from basalt fiber and also compared with structures developed from braided composites having glass fiber as core. The basic design is modified with straight rod to improve the strengthening behavior of structure with structural elements. The Poisson’s ratio of the modified structure are studied. The Poisson’s ratio of the structure made from basalt and glass reinforced BCRs are almost similar but the tensile behavior of basalt based structure is good than glass fiber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auxetic materials are a class of materials behaves unusual way compared to regular materials i.e. possess negative Poisson’s ratio. This paper reports, the development of auxetic structures based on re-entrant hexagon design from braided composite materials and testing of the mechanical properties (tensile property, auxetic property and work of rupture). The structure developed from glass and basalt braided composite rods and properties were compared between them. Later, the basic re-entrant hexagon design was modified with vertical straight rods to improve their mechanical behavior and their auxetic property was studied. Auxetic behavior of these structures was studied in a tensile testing machine taking video during testing by Digital camera, later the video converted into images to measure the strain values using simple software, ImageJ. Along with experimental work, analytical model was used to calculate the Poisson’s ratio of basic structure and results were compared

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to remarkable physical properties, special surface chemistry and excellent biological properties, as low toxicity, biocompatibility and biodegradability, nanocellulose has gained much attention for its use as biomedical material, applied in medical implants, tissue engineering, drug delivery, wound-healing, cardiovascular applications, among others. This paper presents a review on nanocellulose applied in biomedical area.