808 resultados para Video monitors
Resumo:
The explosion of multimedia digital content and the development of technologies that go beyond traditional broadcast and TV have rendered access to such content important for all end-users of these technologies. While originally developed for providing access to multimedia digital libraries, video search technologies assume now a more demanding role. In this paper, we attempt to shed light onto this new role of video search technologies, looking at the rapid developments in the related market, the lessons learned from state of art video search prototypes developed mainly in the digital libraries context and the new technological challenges that have risen. We focus on one of the latter, i.e., the development of cross-media decision mechanisms, drawing examples from REVEAL THIS, an FP6 project on the retrieval of video and language for the home user. We argue, that efficient video search holds a key to the usability of the new ”pervasive digital video” technologies and that it should involve cross-media decision mechanisms.
Resumo:
Innovations in hardware and network technologies lead to an exploding number of non-interrelated parallel media streams. Per se this does not mean any additional value for consumers. Broadcasting and advertisement industries have not yet found new formats to reach the individual user with their content. In this work we propose and describe a novel digital broadcasting framework, which allows for the live staging of (mass) media events and improved consumer personalisation. In addition new professions for future TV production workflows which will emerge are described, namely the 'video composer' and the 'live video conductor'.
Resumo:
This paper presents an empirical study of affine invariant feature detectors to perform matching on video sequences of people with non-rigid surface deformation. Recent advances in feature detection and wide baseline matching have focused on static scenes. Video frames of human movement capture highly non-rigid deformation such as loose hair, cloth creases, skin stretching and free flowing clothing. This study evaluates the performance of six widely used feature detectors for sparse temporal correspondence on single view and multiple view video sequences. Quantitative evaluation is performed of both the number of features detected and their temporal matching against and without ground truth correspondence. Recall-accuracy analysis of feature matching is reported for temporal correspondence on single view and multiple view sequences of people with variation in clothing and movement. This analysis identifies that existing feature detection and matching algorithms are unreliable for fast movement with common clothing.
Resumo:
In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.
Resumo:
Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a handheld video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a stateof- the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-theart tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.