952 resultados para Variational equations
Resumo:
We prove the equivalence of three weak formulations of the steady water waves equations, namely: the velocity formulation, the stream function formulation and the Dubreil-Jacotin formulation, under weak Hölder regularity assumptions on their solutions.
Resumo:
The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh–Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413–443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.
Resumo:
The understanding of the statistical properties and of the dynamics of multistable systems is gaining more and more importance in a vast variety of scientific fields. This is especially relevant for the investigation of the tipping points of complex systems. Sometimes, in order to understand the time series of given observables exhibiting bimodal distributions, simple one-dimensional Langevin models are fitted to reproduce the observed statistical properties, and used to investing-ate the projected dynamics of the observable. This is of great relevance for studying potential catastrophic changes in the properties of the underlying system or resonant behaviours like those related to stochastic resonance-like mechanisms. In this paper, we propose a framework for encasing this kind of studies, using simple box models of the oceanic circulation and choosing as observable the strength of the thermohaline circulation. We study the statistical properties of the transitions between the two modes of operation of the thermohaline circulation under symmetric boundary forcings and test their agreement with simplified one-dimensional phenomenological theories. We extend our analysis to include stochastic resonance-like amplification processes. We conclude that fitted one-dimensional Langevin models, when closely scrutinised, may result to be more ad-hoc than they seem, lacking robustness and/or well-posedness. They should be treated with care, more as an empiric descriptive tool than as methodology with predictive power.
Resumo:
We consider four-dimensional variational data assimilation (4DVar) and show that it can be interpreted as Tikhonov or L2-regularisation, a widely used method for solving ill-posed inverse problems. It is known from image restoration and geophysical problems that an alternative regularisation, namely L1-norm regularisation, recovers sharp edges better than L2-norm regularisation. We apply this idea to 4DVar for problems where shocks and model error are present and give two examples which show that L1-norm regularisation performs much better than the standard L2-norm regularisation in 4DVar.
Resumo:
Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.
Resumo:
This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.
Resumo:
Cloud imagery is not currently used in numerical weather prediction (NWP) to extract the type of dynamical information that experienced forecasters have extracted subjectively for many years. For example, rapidly developing mid-latitude cyclones have characteristic signatures in the cloud imagery that are most fully appreciated from a sequence of images rather than from a single image. The Met Office is currently developing a technique to extract dynamical development information from satellite imagery using their full incremental 4D-Var (four-dimensional variational data assimilation) system. We investigate a simplified form of this technique in a fully nonlinear framework. We convert information on the vertical wind field, w(z), and profiles of temperature, T(z, t), and total water content, qt (z, t), as functions of height, z, and time, t, to a single brightness temperature by defining a 2D (vertical and time) variational assimilation testbed. The profiles of w, T and qt are updated using a simple vertical advection scheme. We define a basic cloud scheme to obtain the fractional cloud amount and, when combined with the temperature field, we convert this information into a brightness temperature, having developed a simple radiative transfer scheme. With the exception of some matrix inversion routines, all our code is developed from scratch. Throughout the development process we test all aspects of our 2D assimilation system, and then run identical twin experiments to try and recover information on the vertical velocity, from a sequence of observations of brightness temperature. This thesis contains a comprehensive description of our nonlinear models and assimilation system, and the first experimental results.
Resumo:
A new incremental four-dimensional variational (4D-Var) data assimilation algorithm is introduced. The algorithm does not require the computationally expensive integrations with the nonlinear model in the outer loops. Nonlinearity is accounted for by modifying the linearization trajectory of the observation operator based on integrations with the tangent linear (TL) model. This allows us to update the linearization trajectory of the observation operator in the inner loops at negligible computational cost. As a result the distinction between inner and outer loops is no longer necessary. The key idea on which the proposed 4D-Var method is based is that by using Gaussian quadrature it is possible to get an exact correspondence between the nonlinear time evolution of perturbations and the time evolution in the TL model. It is shown that J-point Gaussian quadrature can be used to derive the exact adjoint-based observation impact equations and furthermore that it is straightforward to account for the effect of multiple outer loops in these equations if the proposed 4D-Var method is used. The method is illustrated using a three-level quasi-geostrophic model and the Lorenz (1996) model.
Resumo:
We consider the time-harmonic Maxwell equations with constant coefficients in a bounded, uniformly star-shaped polyhedron. We prove wavenumber-explicit norm bounds for weak solutions. This result is pivotal for convergence proofs in numerical analysis and may be a tool in the analysis of electromagnetic boundary integral operators.