947 resultados para Vancomycin-resistant enterococci
Resumo:
Multiple Aspergillus fumigatus isolates from a patient with two aspergillomas complicating chronic pulmonary aspergillosis were pan-azole resistant. Microsatellite typing was identical for all isolates despite major phenotypic and some growth rate differences. Three different cyp51A mutations were found (G138C, Y431C, and G434C), of which the first two were demonstrated by heterologous expression in a hypersusceptible Saccharomyces cerevisiae strain to be at least partly responsible for elevated MICs. cyp51A and cyp51B gene duplication was excluded, but increased expression of cyp51A was demonstrated in three isolates selected for additional study (7-to 13-fold increases). In the isolate with the greatest cyp51A expression, an Aft1 transposon was found inserted 370 bp upstream of the start codon of the cyp51A gene, an integration location never previously demonstrated in Aspergillus. Two transcription start sites were identified at 49 and 136 bp upstream of the start codon. The role of the Aft1 transposon, if any, in modulating cyp51A expression remains to be established. Increased mRNA expression of the transporters AfuMDR1 and AfuMDR4 also was demonstrated in some isolates, which could contribute to azole resistance or simply represent a stress response. The diversity of confirmed and possible azole resistance mechanisms demonstrated in a single series of isogenic isolates is remarkable, indicating the ability of A. fumigatus to adapt in the clinical setting.
Resumo:
Streptococcus pyogenes is responsible for a variety of infectious diseases and immunological complications. In this study, 91 isolates of S. pyogenes recovered from oropharynx secretions were submitted to antimicrobial susceptibility testing, emm typing and pulsed-field gel electrophoresis (PFGE) analysis. All isolates were susceptible to ceftriaxone, levofloxacin, penicillin G and vancomycin. Resistance to erythromycin and clindamycin was 15.4%, which is higher than previous reports from this area, while 20.9% of the isolates were not susceptible to tetracycline. The macrolide resistance phenotypes were cMLSB (10) and iMLSB (4). The ermB gene was predominant, followed by the ermA gene. Thirty-two emm types and subtypes were found, but five (emm1, emm4, emm12, emm22, emm81) were detected in 48% of the isolates. Three new emm subtypes were identified (emm1.74, emm58.14, emm76.7). There was a strong association between emm type and PFGE clustering. A variety of PFGE profiles as well as emm types were found among tetracycline and erythromycin-resistant isolates, demonstrating that antimicrobial resistant strains do not result from the expansion of one or a few clones. This study provides epidemiological data that contribute to the development of suitable strategies for the prevention and treatment of such infections in a poorly studied area.
Resumo:
The molecular basis of Plasmodium vivax chloroquine (CQ) resistance is still unknown. Elucidating the molecular background of parasites that are sensitive or resistant to CQ will help to identify and monitor the spread of resistance. By genotyping a panel of molecular markers, we demonstrate a similar genetic variability between in vitro CQ-resistant and sensitive phenotypes of P. vivax parasites. However, our studies identified two loci (MS8 and MSP1-B10) that could be used to discriminate between both CQ-susceptible phenotypes among P. vivax isolates in vitro. These preliminary data suggest that microsatellites may be used to identify and to monitor the spread of P. vivax-resistance around the world.
Resumo:
The high occurrence of nosocomial multidrug-resistant (MDR) microorganisms is considered a global health problem. Here, we report the draft genome sequence of a MDR Pseudomonas aeruginosa strain isolated in Brazil that belongs to the endemic clone ST277. The genome encodes important resistance determinant genes and consists of 6.7 Mb with a G+C content of 66.86% and 6,347 predicted coding regions including 60 RNAs.
Resumo:
The 2009 pandemic influenza A virus outbreak led to the systematic use of the neuraminidase (NA) inhibitor oseltamivir (OST). Consequently, OST-resistant strains, carrying the mutation H275Y, emerged in the years after the pandemics, with a prevalence of 1-2%. Currently, OST-resistant strains have been found in community settings, in untreated individuals. To spread in community settings, H275Y mutants must contain additional mutations, collectively called permissive mutations. We display the permissive mutations in NA of OST-resistant A(H1N1)pdm09 virus found in Brazilian community settings. The NAs from 2013 are phylogenetically distinct from those of 2012, indicating a tendency of positive selection of NAs with better fitness. Some previously predicted permissive mutations, such as V241I and N369K, found in different countries, were also detected in Brazil. Importantly, the change D344N, also predicted to compensate loss of fitness imposed by H275Y mutation, was found in Brazil, but not in other countries in 2013. Our results reinforce the notion that OST-resistant A(H1N1)pdm09 strains with compensatory mutations may arise in an independent fashion, with samples being identified in different states of Brazil and in different countries. Systematic circulation of these viral strains may jeopardise the use of the first line of anti-influenza drugs in the future.
Resumo:
Drug-resistant tuberculosis (TB) is a growing global threat. Approximately 450,000 people developed multidrug-resistant TB worldwide in 2012 and an estimated 170,000 people died from the disease. This paper describes the sociodemographic, clinical-epidemiological and bacteriological aspects of TB and correlates these features with the distribution of anti-TB drug resistance. Mycobacterium tuberculosis (MT) cultures and drug susceptibility testing were performed according to the BACTEC MGIT 960 method. The results demonstrated that MT strains from individuals who received treatment for TB and people who were infected with human immunodeficiency virus were more resistant to TB drugs compared to other individuals (p < 0.05). Approximately half of the individuals received supervised treatment, but most drug-resistant cases were positive for pulmonary TB and exhibited positive acid-fast bacilli smears, which are complicating factors for TB control programs. Primary healthcare is the ideal level for early disease detection, but tertiary healthcare is the most common entry point for patients into the system. These factors require special attention from healthcare managers and professionals to effectively control and monitor the spread of TB drug-resistant cases.
Resumo:
An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniaespecies from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1,blaSHV-28, aac(6’)1b-cr,catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1,aac(6’)-Ib, aac(3)-IId,sul1,2, blaTEM-1A,1B,blaOXA-9, blaCTX-M-15,blaSHV-11, cmlA1, erm(B),mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniaestrains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniaeNTUHK2044, a transposase gene InsH of IS5-13 was found inserted.
Resumo:
Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, can be regarded as potential reservoirs of resistance genes for pathogenic strains, e.g., Staphylococcus aureus. The aim of this study was to assess the prevalence of different resistance phenotypes to macrolide, lincosamide, and streptogramins B (MLSB) antibiotics among erythromycin-resistant S. epidermidis, together with the evaluation of genes promoting the following different types of MLSB resistance:ermA, ermB, ermC,msrA, mphC, and linA/A’. Susceptibility to spiramycin was also examined. Among 75 erythromycin-resistantS. epidermidis isolates, the most frequent phenotypes were macrolides and streptogramins B (MSB) and constitutive MLSB (cMLSB). Moreover, all strains with the cMLSB phenotype and the majority of inducible MLSB (iMLSB) isolates were resistant to spiramycin, whereas strains with the MSB phenotype were sensitive to this antibiotic. The D-shape zone of inhibition around the clindamycin disc near the spiramycin disc was found for some spiramycin-resistant strains with the iMLSB phenotype, suggesting an induction of resistance to clindamycin by this 16-membered macrolide. The most frequently isolated gene was ermC, irrespective of the MLSB resistance phenotype, whereas the most often noted gene combination wasermC, mphC, linA/A’. The results obtained showed that the genes responsible for different mechanisms of MLSB resistance in S. epidermidis generally coexist, often without the phenotypic expression of each of them.
Resumo:
The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candidaspecies known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei - A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. kruseidemands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates.
Resumo:
Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 µg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.