830 resultados para Vanadium alloys
Resumo:
Ti45Zr35Ni13Pd7 alloys are prepared by melt spinning at different cooling rates (v). The phase structure and electrochemical hydrogen storage performance are investigated. When U is 10 m/s, the alloy consists of icosahedral quasicrystalline phase (I-phase), C14 Laves phase and a little amorphous phase. When v increases to 20 or 30 m/s, a mixed structure of I-phase and amorphous phase is formed. Maximum discharge capacity of alloy electrode decreases from 156 mAh/g (v = 10 m/s) to 139 mAh/g (v = 30 m/s) with increasing v. High-rate discharge ability at the discharge current density of 240 mA/g decreases monotonically from 61.2% (v = 10 m/s) to 56.8% (v = 30 m/s).
Resumo:
Ti45Zr35Ni20-xPdx (x = 0, 1, 3, 5 and 7, at%) alloys were prepared by melt-spinning. The phase structure and electrochemical hydrogen storage performances of melt-spun alloys were investigated. The melt-spun alloys were icosahedral quasicrystalline phase, and the quasi-lattice constant increased with increasing x value. The maximum discharge capacity of alloy electrodes increased from 79 mAh/g (x = 0) to 148 mAh/g (x = 7). High-rate dis-chargeability and cycling stability were also enhanced with the increase of Pd content. The improvement in the electrochemical hydrogen storage characteristics may be ascribed to better electrochemical activity and oxidation resistance of Pd than that of Ni.
Resumo:
Three Polypropylene/Poly(ethylene-co-propylene) (PP/EPR) in-reactor alloys produced by a two-stage slurry/gas polymerization had different ethylene contents and mechanical properties, which were achieved by controlling the copolymerization time. The three alloys were fractionated into five fractions via temperature rising dissolution fractionation (TRDF), respectively. The chain structures of the whole samples and their fractions were analyzed using high-temperature gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), C-13 nuclear magnetic resonance (C-13 NMR), and differential scanning calorimetry (DSC) techniques. These three in-reactor alloys mainly contained four portions: ethylenepropylene random copolymer (EPR), ethylene-propylene (EP) segmented and block copolymers, and propylene homopolymer. The increased copolymerization time caused the increased ethylene content of the sample. The weight percent of EPR, EP segmented and block copolymer also became higher.
Resumo:
Mg-5Al-0.3Mn-xCe (x = 0-3, wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results revealed that the main phases of as-cast Mg-5Al-0.3Mn alloy consist of alpha-Mg matrix and beta-Mg17Al12 phase. With the addition of Ce element, Al11Ce3 precipitates were formed and mainly aggregated along the grain boundaries. The amount of the Al11Ce3 precipitates increased with increasing addition of Ce, but the amount of beta-Mg17Al12 phase decreased. The highest tensile strength was obtained in Mg-5Al-0.3Mn-1.5Ce alloy. The ultimate tensile strength (UTS), yield strength (YS) and elongation at room temperature are 203 MPa, 88 MPa and 20%, separately.
Resumo:
Vanadium(III) complexes bearing tridentate salicylaldiminato ligands (2a-f) [OC6H4CH=NL]VCl2(THF) (L = CH2CH2OMe, 2a; CH2CH2NMe2, 2b; CH2C5H4N, 2c; 8-C9H6N (quinoline), 2d; 2-MeSC6H4, 2e; 2-Ph2PC6H4, 2f) and tridentate beta-enaminoketonato ligands [OC6H8CH=N-2-Ph2PC6H4]VCl2(THF) (2g) and [O(Ph)C=CHCH=N-2-Ph2PC6H4]VCl2(THF) (2h) were prepared from VCl3(THF)(3) by treating with 1.0 equiv of the deprotonated ligands in tetrahydrofuran (THF). These complexes were characterized by FTIR and mass spectrometry as well as elemental analysis. Structures of complexes 2e, 2f, and 2h were further confirmed by X-ray crystallographic analysis. These complexes were investigated as catalysts for olefin polymerization in the presence of organoaluminum compounds. On activation with Et2AlCl, complexes 2a-h exhibited high catalytic activities toward ethylene polymerization (up to 20.64 kg PE/mmol(v) center dot h center dot bar) even at high temperature, suggesting these catalysts possess high thermal stability.
Resumo:
A series of novel vanadium(III) complexes hearing heteroatoill-containing group-substituted salicylaldiminato ligands [RN=CH(ArO)]VCl2(THF)(2) (Ar = C6H4, R = C3H2NS, 2a; C7H4NS, 2c; C7H5N2, 2d; Ar = C(6)H(2)tBu(2) (2,4), R = C3H2NS, 2b) have been synthesized and characterized. Structure of complex 2c was further confirmed by X-ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a-d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolv h bar), and affording polymer with unimodal molecular weight distributions at 25-70 degrees C in the first 5-min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 degrees C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a-d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation.
Resumo:
The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.
Resumo:
A series of novel vanadium(III) complexes bearing iminopyrrolide chelating ligands [2-(RN=CH)C4H3N]V(THF)(2)Cl-2 (2a: R = cyclohexyl; 2b: R = Ph; 2c: R = 2,6-iPr(2)C(6)H(3); 2d: R = p-CF3C6H4; 2e: R = C6F5) have been synthesized and characterized. Single-crystal X-ray diffraction revealed that complexes 2a, 2c and 2e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a co-catalyst, these complexes displayed high catalytic activities up to 48.6 kg PE mmol(V)(-1) h(-1) bar(-1) for ethylene polymerization, and produced high molecular weight polymers. 2a-e/Et2AlCl catalytic systems were tolerant to elevated temperature (70 degrees C) and yielded unimodal polyethylenes, indicating the single site behaviour of these catalysts. By pre-treating with equimolar amounts of alkylaluminums, functional alpha-olefin 10-undecen-1-ol can be efficiently incorporated into polyethylene chains. 10-Undecen-1-ol incorporation can easily reach 15.8 mol% under the mild conditions.
Resumo:
Microstructures and mechanical properties of the Mg-8Gd-xZn-0.4Zr (x = 0, 1 and 3 wt.%) alloys in the as-cast, as-extruded and extruded-T5 conditions, have been investigated. The peak-aged Mg-8Gd-1Zn-0.4Zr alloy during isothermal ageing at 423 K acquires highest mechanical properties, with the highest ultimate tensile strength and yield tensile strength of 314 and 217 MPa, respectively. Addition of Zn has obvious effect on age hardening responses, especially for 1 wt.% Zn addition. It is due to a uniform distribution of beta' phase which can impede the movement of dislocations. However, addition of 3 wt.% Zn to the Mg-8Gd-0.4Zr alloy leads to a precipitation of Mg3Zn3Gd2 phase (W-phase). This phase is incoherent with interface of the matrix and becomes cores of the fracture in tensile test at room or elevated temperature.
Resumo:
Die-cast Mg-4Al-4RE-0.4Mn (RE = Ce-rich mischmetal) and Mg-4Al-4La-0.4Mn magnesium alloys were prepared successfully and their microstructure, tensile and creep properties have been investigated. The results show that two binary Al-RE phases, Al11RE3 and Al2RE, are formed along grain boundaries in Mg-4Al-4RE-0.4Mn alloy, while the phase compositions of Mg-4Al-4La-0.4Mn alloy mainly consist of alpha-Mg phase and Al11La3 phase. And in Mg-4Al-4La-0.4Mn alloy the Al11La3 phase occupies a large grain boundary area and grows with complicated morphologies, which is characterized by scanning electron microscopy in detail. Changing the rare earth content of the alloy from Ce-rich mischmetal to lanthanum gives a further improvement in the tensile and creep properties, and the later could be attributed to the better thermal stability of Al11La3 phase in Mg-4Al-4La-0.4Mn alloy than that of Al11RE3 phase in Mg-4Al-4RE-0.4Mn alloy.
Resumo:
Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.
Resumo:
High-pressure die-cast (HPDC) Mg-4Al-4RE-0.4Mn (RE = La, Ce) magnesium alloys were prepared and their microstructures, tensile properties, and creep behavior have been investigated in detail. The results show that two binary Al-Ce phases, Al11Ce3 and Al2Ce, are formed mainly along grain boundaries in Mg-4Al-4Ce-0.4Mn alloy, while the phase composition of Mg-4Al-4La-0.4Mn alloy contains only alpha-Mg and Al11La3. The Al11La3 phase comprises large coverage of the grain boundary region and complicated morphologies. Compared with Al11Ce3 phase, the higher volume fraction and better thermal stability of Al11La3 have resulted in better-fortified grain boundaries of the Mg-4Al-4La-0.4Mn alloy. Thus higher tensile strength and creep resistance could be obtained in Mg-4Al-4La-0.4Mn alloy in comparison with that of Mg-4Al-4Ce-0.4Mn. Results of the theoretical calculation that the stability of Al11La3 is the highest among four Al-RE intermetallic compounds supports the experimental results further.
Resumo:
Microstructures and mechanical properties of the Mg-7Y-4Gd-xZn-0.4Zr (x = 0.5, 1.5, 3, and 5 wt.%) alloys in the as-cast, as-extruded, and peak-aged conditions have been investigated by using optical microscopy, scanning electron microscope, X-ray diffraction, and transmission electron microscopy. It is found that the peak-aged Mg-7Y-4Gd-1.5Zn-0.4Zr alloys have the highest strength after aging at 220 A degrees C. The highest ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The addition of 1.5 wt.% Zn to the based alloys results in a greater aging effect and better mechanical properties at both room and elevated temperatures. The improved mechanical properties are mainly ascribed to both a fine beta' phase and a long periodic stacking-ordered structure, which coexist together in the peak-aged alloys.
Resumo:
Ti44Zr32Ni22Cu2 and Ti41Zr29Ni28Cu2 alloys were prepared by the melt-spinning method. The phase structure was analyzed by X-ray diffraction, and the electrochemical performances of the melt-spun alloys were investigated. The results indicated that the Ti44Zr32Ni22Cu2 alloy was composed of the icosahedral quasicrystals and amorphous phases, and the Ti41Zr29Ni28Cu2 alloy comprised icosahedral quasicrystals, amorphous, and Laves phases. The maximum discharge capacity was 141 mAh/g for the Ti44Zr32Ni22Cu2 alloy and 181 mAh/g for the Ti41Zr29Ni28Cu2 alloy, respectively. The Ti41Zr29Ni28Cu2 alloy also showed a better high-rate dischargeabifity and cycling stability. The better electrochemical properties should be ascribed to the high content of Ni, which was beneficial to the electrochemical kinetic properties and made the alloy more resistant to oxidation, as well as to the Laves phase in the Ti41Zr29Ni28Cu2 alloy, which could work as the electro-catalyst and the micro-current collector.