925 resultados para Ultrasonic Vocalizations (USVs)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757567]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In pursuit of newer and more effective contrast agents for magnetic resonance imaging, we report in this article the use of biocompatible chitosan-coated ferrite nanoparticles of different kinds with a view to determine their potential applications as the contrast agents in the field of nuclear magnetic resonance. The single-phase ferrite particles were synthesized by chemical co-precipitation (CoFe2O4 and Fe3O4) and by applying ultrasonic vibration (CoFe2O4 and Co0.8Zn0.2Fe2O4). Although magnetic anisotropy of CoFe2O4 nanoparticle leads to finite coercivity even for nanoensembles, it has been reduced significantly to a minimum level by applying ultrasonic vibration. Fe3O4 synthesized by chemical co-precipitation yielded particles which already possess negligible coercivity and remanence. Substitution of Co by Zn in CoFe2O4 increases the magnetization significantly with a small increase in coercivity and remanence. Particles synthesized by the application of ultrasonic vibration leads to the higher values of T-2 relaxivities than by chemical coprecipitation. We report that the T-2 relaxivities of these particles are of two orders of magnitude higher than corresponding T-1 relaxivities. Thus, these particles are evidently suitable as contrast agent for T-2 weighted MR images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-frequency sounds are advantageous for long-range acoustic signal transmission, but for small animals they constitute a challenge for signal detection and localization. The efficient detection of sound in insects is enhanced by mechanical resonance either in the tracheal or tympanal system before subsequent neuronal amplification. Making small structures resonant at low sound frequencies poses challenges for insects and has not been adequately studied. Similarly, detecting the direction of long-wavelength sound using interaural signal amplitude and/or phase differences is difficult for small animals. Pseudophylline bushcrickets predominantly call at high, often ultrasonic frequencies, but a few paleotropical species use lower frequencies. We investigated the mechanical frequency tuning of the tympana of one such species, Onomarchus uninotatus, a large bushcricket that produces a narrow bandwidth call at an unusually low carrier frequency of 3.2. kHz. Onomarchus uninotatus, like most bushcrickets, has two large tympanal membranes on each fore-tibia. We found that both these membranes vibrate like hinged flaps anchored at the dorsal wall and do not show higher modes of vibration in the frequency range investigated (1.5-20. kHz). The anterior tympanal membrane acts as a low-pass filter, attenuating sounds at frequencies above 3.5. kHz, in contrast to the high-pass filter characteristic of other bushcricket tympana. Responses to higher frequencies are partitioned to the posterior tympanal membrane, which shows maximal sensitivity at several broad frequency ranges, peaking at 3.1, 7.4 and 14.4. kHz. This partitioning between the two tympanal membranes constitutes an unusual feature of peripheral auditory processing in insects. The complex tracheal shape of O. uninotatus also deviates from the known tube or horn shapes associated with simple band-pass or high-pass amplification of tracheal input to the tympana. Interestingly, while the anterior tympanal membrane shows directional sensitivity at conspecific call frequencies, the posterior tympanal membrane is not directional at conspecific frequencies and instead shows directionality at higher frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the effect of frequency of base shaking on the dynamic response of unreinforced and reinforced soil slopes through a series of shaking table tests. Slopes were constructed using clayey sand and geogrids were used for reinforcing the slopes. Two different slope angles 45 degrees and 60 degrees were used in tests and the quantity and location of reinforcement is varied in different tests. Acceleration of shaking is kept constant as 0.3 g in all the tests to maximize the response and the frequency of shaking was 2 Hz, 5 Hz and 7 Hz in different tests. The slope is instrumented with ultrasonic displacement sensors and accelerometers at different elevations. The response of different slopes is compared in terms of the deformation of the slope and acceleration amplifications measured at different elevations. It is observed that the displacements at all elevations increased with increase in frequency for all slopes, whereas the effect of frequency on acceleration amplifications is not significant for reinforced slopes. Results showed that the acceleration and displacement response is not increasing proportionately with the increase in the frequency, suggesting that the role of frequency in the seismic response is very important. Reinforced slopes showed lesser displacements compared to unreinforced slopes at all frequency levels. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assembly of aerospace and automotive structures in recent years is increasingly carried out using adhesives. Adhesive joints have advantages of uniform stress distribution and less stress concentration in the bonded region. Nevertheless, they may suffer due to the presence of defects in bond line and at the interface or due to improper curing process. While defects like voids, cracks and delaminations present in the adhesive bond line may be detected using different NDE methods, interfacial defects in the form of kissing bond may go undetected. Attempts using advanced ultrasonic methods like nonlinear ultrasound and guided wave inspection to detect kissing bond have met with limited success stressing the need for alternate methods. This paper concerns the preliminary studies carried out on detectability of dry contact kissing bonds in adhesive joints using the Digital Image Correlation (DIC) technique. In this attempt, adhesive joint samples containing varied area of kissing bond were prepared using the glass fiber reinforced composite (GFRP) as substrates and epoxy resin as the adhesive layer joining them. The samples were also subjected to conventional and high power ultrasonic inspection. Further, these samples were loaded till failure to determine the bond strength during which digital images were recorded and analyzed using the DIC method. This noncontact method could indicate the existence of kissing bonds at less than 50% failure load. Finite element studies carried out showed a similar trend. Results obtained from these preliminary studies are encouraging and further tests need to be done on a larger set of samples to study experimental uncertainties and scatter associated with the method. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper reports exchange-spring soft and hard ferrite nanocomposites synthesized by chemical co-precipitation with or without the application of ultrasonic vibration. The composites contained BaFe12O19 as the hard phase and CoFe2O4/MgFe2O4 as the soft phase. X-ray diffraction patterns of the samples in the optimum calcined condition indicated the presence of soft ferrites as face-centred cubic (fcc) and hard ferrites as hexagonal close packed (hcp) structure respectively. Temperature dependence of magnetization in the range of 20-700 degrees C demonstrated distinct presence of soft and hard ferrites as magnetic phases which are characterized by wide difference in magnetic anisotropy and coercivity. Exchange-spring mechanism led these nanocomposite systems to exchange-coupled, which ultimately produced convex hysteresis loops characteristic of a single-phase permanent magnet. Fairly high value of coercivity and maximum energy product were observed for the samples in the optimum calcined conditions with a maximum applied field of 1600 kA/m (2 T).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper illustrates a Wavelet Coefficient based approach using experiments to understand the sensitivity of ultrasonic signals due to parametric variation of a crack configuration in a metal plate. A PZT patch sensor/actuator system integrated to a metal plate with through-thickness crack is used. The proposed approach uses piezoelectric patches, which can be used to both actuate and sense the ultrasonic signals. While this approach leads to more flexibility and reduced cost for larger scalability of the sensor/actuator network, the complexity of the signals increases as compared to what is encountered in conventional ultrasonic NDE problems using selective wave modes. A Damage Index (DI) has been introduced, which is function of wavelet coefficient. Experiments have been carried out for various crack sizes, crack orientations and band-limited tone-burst signal through FIR filter. For a 1 cm long crack interrogated with 20 kHz tone-burst signal, the Damage Index (DI) for the horizontal crack orientation increases by about 70% with respect to that for 135 degrees oriented crack and it increases by about 33% with respect to the vertically oriented crack. The detailed results reported in this paper is a step forward to developing computational schemes for parametric identification of damage using sensor/actuator network and ultrasonic wave.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ethanol sensing properties of porous Cr2O3 thin films deposited by the ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture is reported. The impact of the precursor selection and various deposition parameters on the film crystallinity, surface morphology and stoichiometry are studied using thermo-gravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy techniques. The film morphology exhibits a highly porous nature, as a result of the exothermic combustion reaction during film deposition. The gas sensing properties of these films are investigated in the temperature range of 200-375 degrees C for ethanol. The films show two different regions of response for ethanol above and below 300 degrees C. A good relationship between the response and the ethanol concentration is observed, and is modeled using an empirical relation. The possible mechanism and the surface chemical reactions of ethanol over the chromium oxide surface are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stiffener is one of the major components of aircraft structures to increase the load carrying capacity. Damage in the stiffener, mostly in the form of crack is an unavoidable problem in aerospace structures. Stiffener is bonded to the inner side of the aircraft panel which is not accessible for immediate inspection. A sensor-actuator network can be placed on the outer side of the panel that is accessible. Ultrasonic lamb waves are transmitted through stiffener using the sensoractuator network for detecting the presence of damages. The sensor-actuator network is placed on both halves of the stiffened section on the accessible surface of the plate. Detecting damage in stiffener by using this technique has significant potential for SHM technology. One of the major objectives of the present work is to determine the smallest detectable crack on the stiffener using the proposed technique. Wavelet based damage parameter correlation studies are carried out. In the proposed scheme, with increase in the damage size along the stiffener, it is found that the amplitude of the received signal decreases monotonically. The advantage of this technique is that the stiffened panels need not be disassembled in a realistic deployment of SHM system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and non-invasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, we present a Born-ratio type of data normalization for reconstruction of initial acoustic pressure distribution in photoacoustic tomography (PAT). The normalized Born-ratio type of data is obtained as a ratio of photoacoustic pressure obtained with tissue sample in a coupling medium to the one obtained using purely coupling medium. It is shown that this type of data normalization improves the quantitation (intrinsic contrast) of the reconstructed images in comparison to the traditional techniques (unnormalized) that are currently available in PAT. Studies are carried out using various tissue samples. The robustness of the proposed method is studied at various noise levels added to the collected data. The improvement in quantitation can enable accurate estimation of pathophysiological parameter (optical absorption coefficient, a) of tissue sample under investigation leading to better sensitivity in PAT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on understanding the seismic response of geosynthetic reinforced retaining walls through shaking table tests on models of modular block and rigid faced reinforced retaining walls. Reduced-scale models of retaining walls reinforced with geogrid layers were constructed in a laminar box mounted on a uniaxial shaking table and subjected to various levels of sinusoidal base shaking. Models were instrumented with ultrasonic displacement sensors, earth pressure sensors and accelerometers. Effects of backfill density, number of reinforcement layers and reinforcement type on the performance of rigid faced and modular block walls were studied through different series of model tests. Performances of the walls were assessed in terms of face deformations, crest settlement and acceleration amplification at different elevations and compared. Modular block walls performed better than the rigid faced walls for the same level of base shaking because of the additional support derived by stacking the blocks with an offset. Type and quantity of reinforcement has significant effect on the seismic performance of both the types of walls. Displacements are more sensitive to relative density of the backfill and decrease with increasing relative density, the effect being more pronounced in case of unreinforced walls compared to the reinforced ones. Acceleration amplifications are not affected by the wall facing and inclusion of reinforcement. (C) 2015 Elsevier Ltd. All rights reserved.