969 resultados para UNIVARIATE DISTRIBUTIONS
Resumo:
Northern hardwood management was assessed throughout the state of Michigan using data collected on recently harvested stands in 2010 and 2011. Methods of forensic estimation of diameter at breast height were compared and an ideal, localized equation form was selected for use in reconstructing pre-harvest stand structures. Comparisons showed differences in predictive ability among available equation forms which led to substantial financial differences when used to estimate the value of removed timber. Management on all stands was then compared among state, private, and corporate landowners. Comparisons of harvest intensities against a liberal interpretation of a well-established management guideline showed that approximately one third of harvests were conducted in a manner which may imply that the guideline was followed. One third showed higher levels of removals than recommended, and one third of harvests were less intensive than recommended. Multiple management guidelines and postulated objectives were then synthesized into a novel system of harvest taxonomy, against which all harvests were compared. This further comparison showed approximately the same proportions of harvests, while distinguishing sanitation cuts and the future productive potential of harvests cut more intensely than suggested by guidelines. Stand structures are commonly represented using diameter distributions. Parametric and nonparametric techniques for describing diameter distributions were employed on pre-harvest and post-harvest data. A common polynomial regression procedure was found to be highly sensitive to the method of histogram construction which provides the data points for the regression. The discriminative ability of kernel density estimation was substantially different from that of the polynomial regression technique.
Resumo:
This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.
Resumo:
In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.
Resumo:
Soft tissue damage has been observed in hip joints with pathological geometries. Our primary goal was to study the relationship between morphological variations of the bony components of the hip and resultant stresses within the soft tissues of the joint during routine daily activities. The secondary goal was to find the range of morphological parameters in which stresses are minimized. Computational models of normal and pathological joints were developed based on variations of morphological parameters of the femoral head (Alpha angle) and acetabulum (CE angle). The Alpha angle was varied between 40 degrees (normal joint) and 80 degrees (cam joint). The CE angle was varied between 0 degrees (dysplastic joint) and 40 degrees (pincer joint). Dynamic loads and motions for walking and standing to sitting were applied to all joint configurations. Contact pressures and stresses were calculated and crosscompared to evaluate the influence of morphology. The stresses in the soft tissues depended strongly on the head and acetabular geometry. For the dysplastic joint, walking produced high acetabular rim stresses. Conversely, for impinging joints, standing-to-sitting activities that involved extensive motion were critical, inducing excessive distortion and shearing of the tissue-bone interface. Zones with high von Mises stresses corresponded with clinically observed damage zones in the acetabular cartilage and labrum. Hip joint morphological parameters that minimized were 20 degrees