925 resultados para Two-Phase Start-up Demonstration Test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase equilibria of the system Ca-Ta-O is established by equilibrating eleven samples at 1200 K for prolonged periods and phase identification in quenched samples by optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Four ternary oxides are identified: CaTa4O11, CaTa2O6, Ca2Ta2O7 and Ca4Ta2O9. Isothermal section of the phase diagram is composed using the results. Thermodynamic properties of the ternary oxides are measured in the temperature range from 975 to 1275 K employing solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells essentially measure the chemical potentials of CaO in two-phase fields (Ta2O5 + CaTa4O11), (CaTa4O11 + CaTa2O6), (CaTa2O6 + Ca2Ta2O7), and (Ca2Ta2O7 + Ca4Ta2O9) of the pseudo-binary system CaO-Ta2O5. The standard Gibbs energies of formation of the four ternary oxides from their component binary oxides Ta2O5 and CaO are given by: Delta G(f)((ox))(o) (CaTa4O11) (+/- 482)/J mol(-1) = -58644+21.497 (T/K) Delta G(f)((ox))(o) (CaTa2O6) (+/- 618)/J mol(-1) = -55122+21.893 (T/K) Delta G(f)((ox))(o) (Ca2Ta2O7) (+/- 729)/J mol(-1) = -82562+31.843 (T/K) Delta G(f)((ox))(o) (Ca4Ta2O9) (+/- 955)/J mol(-1) = -126598+48.859 (T/K) The Gibbs energy of formation of the four ternary compounds obtained in this study differs significantly from that reported in the literature. The thermodynamic data and phase diagram are used for understanding the mechanism and kinetics of calciothermic and electrochemical reduction of Ta2O5 to metal. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a survey on different numerical interpolation schemes used for two-phase transient heat conduction problems in the context of interface capturing phase-field methods. Examples are general transport problems in the context of diffuse interface methods with a non-equal heat conductivity in normal and tangential directions to the interface. We extend the tonsorial approach recently published by Nicoli M et al (2011 Phys. Rev. E 84 1-6) to the general three-dimensional (3D) transient evolution equations. Validations for one-dimensional, two-dimensional and 3D transient test cases are provided, and the results are in good agreement with analytical and numerical reference solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For maximizing influence spread in a social network, given a certain budget on the number of seed nodes, we investigate the effects of selecting and activating the seed nodes in multiple phases. In particular, we formulate an appropriate objective function for two-phase influence maximization under the independent cascade model, investigate its properties, and propose algorithms for determining the seed nodes in the two phases. We also study the problem of determining an optimal budget-split and delay between the two phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly complex structure-property interrelationship in the lead-free piezoelectric (x) Na1/2Bi1/2TiO3 - (1 - x) BaTiO3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x = 0.80, i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x < 0.8) to a long-period modulated tetragonal phase (for x > 0.80). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes Bellaiche and Iniguez, Phys. Rev. B 88, 014104 ( 2013); Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we derive an approach for the effective utilization of thermodynamic data in phase-field simulations. While the most widely used methodology for multi-component alloys is following the work by Eiken et al. (2006), wherein, an extrapolative scheme is utilized in conjunction with the TQ interface for deriving the driving force for phase transformation, a corresponding simplistic method based on the formulation of a parabolic free-energy model incorporating all the thermodynamics has been laid out for binary alloys in the work by Folch and Plapp (2005). In the following, we extend this latter approach for multi-component alloys in the framework of the grand-potential formalism. The coupling is applied for the case of the binary eutectic solidification in the Cr-Ni alloy and two-phase solidification in the ternary eutectic alloy (Al-Cr-Ni). A thermodynamic justification entails the basis of the formulation and places it in context of the bigger picture of Integrated Computational Materials Engineering. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The micro-level properties of different self compacting concrete (SCC) mixes with and without mineral admixures are studied. The study considers SCC as a two phase material consisting of matrix and aggregate. Micro indentation technique is employed to obtain the hardness of individual phases and to compute the micro-property (modulus of elasticity). Using a self consistent homogenization procedure, the micro-property is scaled-up to obtain the macro-property which is shown to agree with the experimentally obtained macro values. It is seen that there exists a smaller interfacial transition zone at different ages of curing across all the mixes due to the presence of more fines in SCC. Also, there is no significant change in the property of the SCC having no fly ash or silica fume beyond 28 days whereas a substantial change in the micro and macro properties are seen in the SCC having fly ash and silica fume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexaazamacrocycle (L) stabilized gold nanoparticles (AuNPs) were prepared by combining L with HAuCl4 center dot 3H(2)O in a variety of alcohol-water (1 : 1) mixtures. The dual roles of L as a reducing and stabilizing agent were exploited for the synthesis of AuNPs under the optimized ratio of L to Au3+ (2 : 1). Self-assembled gold nanofilms (AuNFs) were constructed at liquid-liquid interfaces by adding equal volumes of hexane to the dispersions of AuNPs in the alcohol-water systems. The nanofilms were formed spontaneously by shaking the two-phase mixture for a minute followed by standing. The alcohols explored for the self-assembly phenomenon were methanol, ethanol, i-propanol and t-butanol. The systems containing methanol or t-butanol resulted in AuNFs at the interfaces, whereas the other two alcohols were found not suitable and the AuNPs remained dispersed in the corresponding alcohol-water medium. The AuNFs prepared under suitable conditions were coated on a variety of surfaces by the dip and lift-off method/solvent removal approach. The AuNFs were characterized by UV-vis, SEM, TEM, AFM and contact angle measurement techniques. A coated glass-vial or cuvette was used as a catalytic reservoir for nitro-reduction reactions under ambient and aqueous conditions using NaBH4 as the reducing agent. The reduced products (amines) were extracted by aqueous work-up using ethyl acetate followed by evaporation of the organic layer; the isolated products required no further purification. The catalyst was recovered by simply decanting the reaction mixture whereupon the isolated catalyst remained coated inside the vessel. The recovered catalyst was found to be equally efficient for further catalytic cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterophase structures in lead-free perovskite-type ferroelectric solid solutions of (1 - z)(Na0.5Bi0.5)TiO3 - zBaTiO(3) are analysed for a few critical compositions near the morphotropic phase boundary (z = 0.05-0.07). Examples of the phase coexistence and elastic matching of the phases from different symmetry groups are considered to find optimum volume fractions of specific domain types and coexisting phases at the complete stress relief in two-phase samples. Some interrelations between these volume fractions are described using variants of the domain arrangement at changes in the composition and unit-cell parameters. The evaluated room-temperature volume fractions of the ferroelectric monoclinic (Cm symmetry) and tetragonal (P4mm symmetry) phases near the morphotropic phase boundary are in agreement with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gathering systems of crude oil are greatly endangered by the fine sand and soil in oil. Up to now , how to separate sand from the viscid oil is still a technical problem for oil production home or abroad. Recently , Institute of Mechanics in Chinese Academy of Sciences has developed a new type of oil-sand separator , which has been applied successfully in oil field in situ. In this paper, the numerical method of vortex-stream function is used to predict the liquid-solid separating course and the efficiency for this oil-sand separator. Results show that the viscosity and particle diameter have much influence on the particle motion. The calculating separating efficiency is compared with that of experiment and indicates that this method can be used to model the complex two-phase flow in the separator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of a brief review of the continuum theory for macroscopic descriptions and the kinetic theory for microscopic descriptions in solid/liquid two-phase flows, some suggestions are presented, i.e. the solid phase may be described by the Boltzmann equation and the liquid phase still be described by conservation laws in the continuum theory. Among them the action force on the particles by the liquid fluid is a coupling factor which connects the phases. For dilute steady solid/liquid two-phase flows, the particle velocity distribution function can be derived by analogy with the procedures in the kinetic theory of gas molecules for the equilibrium state instead of being assumed, as previous investigators did. This done, more detailed information, such as the velocity probability density distribution, mean velocity distribution and fluctuating intensity etc. can be obtained directly from the particle velocity distribution function or from its integration. Experiments have been performed for dilute solid/liquid two-phase flow in a 4 x 6 cm2 sized circulating square pipe system by means of laser Doppler anemometry so that the theories can be examined. The comparisons show that the theories agree very well with all the measured data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small-scale motions relevant to the collision of heavy particles represent a general challenge to the conventional large-eddy simulation (LES) of turbulent particle-laden flows. As a first step toward addressing this challenge, we examine the capability of the LES method with an eddy viscosity subgrid scale (SGS) model to predict the collision-related statistics such as the particle radial distribution function at contact, the radial relative velocity at contact, and the collision rate for a wide range of particle Stokes numbers. Data from direct numerical simulation (DNS) are used as a benchmark to evaluate the LES using both a priori and a posteriori tests. It is shown that, without the SGS motions, LES cannot accurately predict the particle-pair statistics for heavy particles with small and intermediate Stokes numbers, and a large relative error in collision rate up to 60% may arise when the particle Stokes number is near St_K=0.5. The errors from the filtering operation and the SGS model are evaluated separately using the filtered-DNS (FDNS) and LES flow fields. The errors increase with the filter width and have nonmonotonic variations with the particle Stokes numbers. It is concluded that the error due to filtering dominates the overall error in LES for most particle Stokes numbers. It is found that the overall collision rate can be reasonably predicted by both FDNS and LES for St_K>3. Our analysis suggests that, for St_K<3, a particle SGS model must include the effects of SGS motions on the turbulent collision of heavy particles. The spectral analysis of the concentration fields of the particles with different Stokes numbers further demonstrates the important effects of the small-scale motions on the preferential concentration of the particles with small Stokes numbers.