732 resultados para Twenty-first century
Resumo:
Sea-level rise is an important aspect of climate change because of its impact on society and ecosystems. Here we present an intercomparison of results from ten coupled atmosphere-ocean general circulation models (AOGCMs) for sea-level changes simulated for the twentieth century and projected to occur during the twenty first century in experiments following scenario IS92a for greenhouse gases and sulphate aerosols. The model results suggest that the rate of sea-level rise due to thermal expansion of sea water has increased during the twentieth century, but the small set of tide gauges with long records might not be adequate to detect this acceleration. The rate of sea-level rise due to thermal expansion continues to increase throughout the twenty first century, and the projected total is consequently larger than in the twentieth century; for 1990-2090 it amounts to 0.20-0.37 in. This wide range results from systematic uncertainty in modelling of climate change and of heat uptake by the ocean. The AOGCMs agree that sea-level rise is expected to be geographically non-uniform, with some regions experiencing as much as twice the global average, and others practically zero, but they do not agree about the geographical pattern. The lack of agreement indicates that we cannot currently have confidence in projections of local sea- level changes, and reveals a need for detailed analysis and intercomparison in order to understand and reduce the disagreements.
Resumo:
Increased tidal levels and storm surges related to climate change are projected to result in extremely adverse effects on coastal regions. Predictions of such extreme and small-scale events, however, are exceedingly challenging, even for relatively short time horizons. Here we use data from observations, ERA-40 reanalysis, climate scenario simulations, and a simple feature model to find that the frequency of extreme storm surge events affecting Venice is projected to decrease by about 30% by the end of the twenty-first century. In addition, through a trend assessment based on tidal observations we found a reduction in extreme tidal levels. Extrapolating the current +17 cm/century sea level trend, our results suggest that the frequency of extreme tides in Venice might largely remain unaltered under the projected twenty-first century climate simulations.
Resumo:
This special issue conceives of “Shakespeare and Islam” in its broadest sense, conceptually, and opens up the conjunction to consideration of both the early modern and more recent periods. It is not directly concerned with addressing doctrinal questions: “Islam” is a flag of convenience for our purposes, an umbrella term that takes in not only the Ottoman Empire but also the Persian (a subject that, perhaps unsurprisingly, tends to be overshadowed by its stronger neighbour), and extends to a discussion of twentieth- and twenty-first-century issues of Shakespearean interpretation. In line with this journal's principal remit, the essays concentrate on questions of staging and interpretation, adaptation and appropriation, thus drawing on and contributing to one of the dominant fields of Shakespeare studies today. While the early modern period remains the collection's central interest, two concluding essays remind us (if we need reminding) that the seemingly endless recycling and reinterpretation of Shakespeare have implications for how we understand the conjunction with Islam today.
Resumo:
Understanding the response of the South Asian monsoon (SAM) system to global climate change is an interesting scientific problem that has enormous implications from the societal viewpoint. While the CMIP3 projections of future changes in monsoon precipitation used in the IPCC AR4 show major uncertainties, there is a growing recognition that the rapid increase of moisture in a warming climate can potentially enhance the stability of the large-scale tropical circulations. In this work, the authors have examined the stability of the SAM circulation based on diagnostic analysis of climate datasets over the past half century; and addressed the issue of likely future changes in the SAM in response to global warming using simulations from an ultrahigh resolution (20 km) global climate model. Additional sensitivity experiments using a simplified atmospheric model have been presented to supplement the overall findings. The results here suggest that the intensity of the boreal summer monsoon overturning circulation and the associated southwesterly monsoon flow have significantly weakened during the past 50-years. The weakening trend of the monsoon circulation is further corroborated by a significant decrease in the frequency of moderate-to-heavy monsoon rainfall days and upward vertical velocities particularly over the narrow mountain ranges of the Western Ghats. Based on simulations from the 20-km ultra high-resolution model, it is argued that a stabilization (weakening) of the summer monsoon Hadley-type circulation in response to global warming can potentially lead to a weakened large-scale monsoon flow thereby resulting in weaker vertical velocities and reduced orographic precipitation over the narrow Western Ghat mountains by the end of the twenty-first century. Supplementary experiments using a simplified atmospheric model indicate a high sensitivity of the large-scale monsoon circulation to atmospheric stability in comparison with the effects of condensational heating.
Resumo:
There is intense scientific and public interest in the Intergovernmental Panel on Climate Change (IPCC) projections of sea level for the twenty-first century and beyond. The Fourth Assessment Report (AR4) projections, obtained by applying standard methods to the results of the World Climate Research Programme Coupled Model Experiment, includes estimates of ocean thermal expansion, the melting of glaciers and ice caps (G&ICs), increased melting of the Greenland Ice Sheet, and increased precipitation over Greenland and Antarctica, partially offsetting other contributions. The AR4 recognized the potential for a rapid dynamic ice sheet response but robust methods for quantifying it were not available. Illustrative scenarios suggested additional sea level rise on the order of 10 to 20 cm or more, giving a wide range in the global averaged projections of about 20 to 80 cm by 2100. Currently, sea level is rising at a rate near the upper end of these projections. Since publication of the AR4 in 2007, biases in historical ocean temperature observations have been identified and significantly reduced, resulting in improved estimates of ocean thermal expansion. Models that include all climate forcings are in good agreement with these improved observations and indicate the importance of stratospheric aerosol loadings from volcanic eruptions. Estimates of the volumes of G&ICs and their contributions to sea level rise have improved. Results from recent (but possibly incomplete) efforts to develop improved ice sheet models should be available for the 2013 IPCC projections. Improved understanding of sea level rise is paving the way for using observations to constrain projections. Understanding of the regional variations in sea level change as a result of changes in ocean properties, wind-stress patterns, and heat and freshwater inputs into the ocean is improving. Recently, estimates of sea level changes resulting from changes in Earth's gravitational field and the solid Earth response to changes in surface loading have been included in regional projections. While potentially valuable, semi-empirical models have important limitations, and their projections should be treated with caution
Resumo:
The impacts of current and future changes in climate have been investigated for Irish vegetation. Warming has been observed over the last two decades, with impacts that are also strongly influenced by natural oscillations of the surrounding ocean, seen as fluctuations in the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. Satellite observations show that vegetation greenness increases in warmer years, a feature mirrored by increases in net ecosystem production observed for a grassland and a plantation forest. An ensemble of general circulation model simulations of future climates indicate temperature rises over the twenty-first century ranging from 1°C to 7°C, depending on future scenarios of greenhouse gas emissions. Net primary production is simulated to increase under all scenarios, due to the positive impacts of rising temperature, a modest rise of precipitation and rising carbon dioxide concentrations. In an optimistic scenario of reducing future emissions, CO2 concentration is simulated to flatten from about 2070, although temperatures continue to increase. Under this scenario Ireland could become a source of carbon, whereas under all other emission scenarios Ireland is a sink for carbon that may increase by up to three-fold over the twenty-first century. A likely and unavoidable impact of changing climate is the arrival of alien plant species, which may disrupt ecosystems and exert negative impacts on native biodiversity. Alien species arrive continually, with about 250 dated arrivals in the twentieth century. A simulation model indicates that this rate of alien arrival may increase by anything between two and ten times, dependent on the future climatic scenario, by 2050. Which alien species may become severely disruptive is, however, not known.
Resumo:
With extreme variability of the Arctic polar vortex being a key link for stratosphere–troposphere influences, its evolution into the twenty-first century is important for projections of changing surface climate in response to greenhouse gases. Variability of the stratospheric vortex is examined using a state-of-the-art climate model and a suite of specifically developed vortex diagnostics. The model has a fully coupled ocean and a fully resolved stratosphere. Analysis of the standard stratospheric zonal mean wind diagnostic shows no significant increase over the twenty-first century in the number of major sudden stratospheric warmings (SSWs) from its historical value of 0.7 events per decade, although the monthly distribution of SSWs does vary, with events becoming more evenly dispersed throughout the winter. However, further analyses using geometric-based vortex diagnostics show that the vortex mean state becomes weaker, and the vortex centroid is climatologically more equatorward by up to 2.5°, especially during early winter. The results using these diagnostics not only characterize the vortex structure and evolution but also emphasize the need for vortex-centric diagnostics over zonally averaged measures. Finally, vortex variability is subdivided into wave-1 (displaced) and -2 (split) components, and it is implied that vortex displacement events increase in frequency under climate change, whereas little change is observed in splitting events.
Resumo:
The global temperature response to increasing atmospheric CO2 is often quantified by metrics such as equilibrium climate sensitivity and transient climate response1. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO2 emissions. Climate–carbon modelling experiments have shown that: (1) the warming per unit CO2 emitted does not depend on the background CO2 concentration2; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions3, 4, 5; and (3) the temperature response to a pulse of CO2 is approximately constant on timescales of decades to centuries3, 6, 7, 8. Here we generalize these results and show that the carbon–climate response (CCR), defined as the ratio of temperature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO2 concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0–2.1 °C per trillion tonnes of carbon (Tt C) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate–carbon models. Uncertainty in land-use CO2 emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate–carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate–carbon feedbacks into a single quantity, the CCR allows CO2-induced global mean temperature change to be inferred directly from cumulative carbon emissions.
Resumo:
The terrestrial biosphere is a key regulator of atmospheric chemistry and climate. During past periods of climate change, vegetation cover and interactions between the terrestrial biosphere and atmosphere changed within decades. Modern observations show a similar responsiveness of terrestrial biogeochemistry to anthropogenically forced climate change and air pollution. Although interactions between the carbon cycle and climate have been a central focus, other biogeochemical feedbacks could be as important in modulating future climate change. Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to reach up to 0.9 or 1.5 W m−2 K−1 towards the end of the twenty-first century, depending on the extent to which interactions with the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling effect owing to carbon dioxide fertilization of the terrestrial biota. The overall magnitude of the biogeochemical feedbacks could potentially be similar to that of feedbacks in the physical climate system, but there are large uncertainties in the magnitude of individual estimates and in accounting for synergies between these effects.
Resumo:
The authors estimate climate warming–related twenty-first-century changes of moisture transports from the descending into the ascending regions in the tropics. Unlike previous studies that employ time and space averaging, here homogeneous high horizontal and vertical resolution data from an Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) climate model are used. This allows for estimating changes in much greater detail (e.g., the estimation of the distribution of ascending and descending regions, changes in the vertical profile, and separating changes of the inward and outward transports). Low-level inward and midlevel outward moisture transports of the convective regions in the tropics are found to increase in a simulated anthropogenically warmed climate as compared to a simulated twentieth-century atmosphere, indicating an intensification of the hydrological cycle. Since an increase of absolute inward transport exceeds the absolute increase of outward transport, the resulting budget is positive, meaning that more water is projected to converge in the moist tropics. The intensification is found mainly to be due to the higher amount of water in the atmosphere, while the contribution of weakening wind counteracts this response marginally. In addition the changing statistical properties of the vertical profile of the moisture transport are investigated and the importance of the substantial outflow of moisture from the moist tropics at midlevels is demonstrated.
Resumo:
Some proponents of local knowledge, such as Sillitoe (2010), have expressed second thoughts about its capacity to effect development on the ‘revolutionary’ scale once predicted. Our argument in this article follows a similar route. Recent research into the management of livestock in South Africa makes clear that rural African livestock farmers experience uncertainty in relation to the control of stock diseases. State provision of veterinary services has been significantly reduced over the past decade. Both white and African livestock owners are to a greater extent left to their own devices. In some areas of animal disease management, African livestock owners have recourse to tried-and-tested local remedies, which are largely plant-based. But especially in the critical sphere of tick control, efficacious treatments are less evident, and livestock owners struggle to find adequate solutions to high tickloads. This is particularly important in South Africa in the early twenty-first century because land reform and the freedom to purchase land in the post-apartheid context affords African stockowners opportunities to expand livestock holdings. Our research suggests that the limits of local knowledge in dealing with ticks is one of the central problems faced by African livestock owners. We judge this not only in relation to efficacy but also the perceptions of livestock owners themselves. While confidence and practice varies, and there is increasing resort of chemical acaricides we were struck by the uncertainty of livestock owners over the best strategies.
Resumo:
The final warming date of the polar vortex is a key component of Southern Hemisphere stratospheric and tropospheric variability in spring and summer. We examine the effect of external forcings on Southern Hemisphere final warming date, and the sensitivity of any projected changes to model representation of the stratosphere. Final warming date is calculated using a temperature-based diagnostic for ensembles of high- and low-top CMIP5 models, under the CMIP5 historical, RCP4.5, and RCP8.5 forcing scenarios. The final warming date in the models is generally too late in comparison with those from reanalyses: around two weeks too late in the low-top ensemble, and around one week too late in the high-top ensemble. Ensemble Empirical Mode Decomposition (EEMD) is used to analyse past and future change in final warming date. Both the low- and high-top ensemble show characteristic behaviour expected in response to changes in greenhouse gas and stratospheric ozone concentrations. In both ensembles, under both scenarios, an increase in final warming date is seen between 1850 and 2100, with the latest dates occurring in the early twenty-first century, associated with the minimum in stratospheric ozone concentrations in this period. However, this response is more pronounced in the high-top ensemble. The high-top models show a delay in final warming date in RCP8.5 that is not produced by the low-top models, which are shown to be less responsive to greenhouse gas forcing. This suggests that it may be necessary to use stratosphere resolving models to accurately predict Southern Hemisphere surface climate change.
Resumo:
One of the greatest challenges we face in the twenty-first century is to sustainably feed nine to ten billion people by 2050 while at the same time reducing environmental impact (e.g. greenhouse gas (GHG) emissions, biodiversity loss, land use change and loss of ecosystem services). To this end, food security must be delivered. According to the United Nations definition, ‘food security exists when all people, at all times, have physical and economic access to sufficient,safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life’. At the same time as delivering food security, we must also reduce the environmental impact of food production. Future climate change will make an impact upon food production. On the other hand, agriculture contributes up to about 30% of the anthropogenic GHG emissions that drive climate change. The aim of this review is to outline some of the likely impacts of climate change on agriculture, the mitigation measures available within agriculture to reduce GHG emissions and outlines the very significant challenge of feeding nine to ten billion people sustainably under a future climate, with reduced emissions of GHG. Each challenge is in itself enormous, requiring solutions that co-deliver on all aspects. We conclude that the status quo is not an option, and tinkering with the current production systems is unlikely to deliver the food and ecosystems services we need in the future; radical changes in production and consumption are likely to be required over the coming decades.
Resumo:
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979–2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40 km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60 km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495 km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4 mm/year. For Antarctica there is an increase in the positive surface mass balance of 285 km3/year corresponding to a sea level fall by 0.8 mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7 cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries.
Resumo:
We analyze here the polar stratospheric temperatures in an ensemble of three 150-year integrations of the Canadian Middle Atmosphere Model (CMAM), an interactive chemistry-climate model which simulates ozone depletion and recovery, as well as climate change. A key motivation is to understand possible mechanisms for the observed trend in the extent of conditions favourable for polar stratospheric cloud (PSC) formation in the Arctic winter lower stratosphere. We find that in the Antarctic winter lower stratosphere, the low temperature extremes required for PSC formation increase in the model as ozone is depleted, but remain steady through the twenty-first century as the warming from ozone recovery roughly balances the cooling from climate change. Thus, ozone depletion itself plays a major role in the Antarctic trends in low temperature extremes. The model trend in low temperature extremes in the Arctic through the latter half of the twentieth century is weaker and less statistically robust than the observed trend. It is not projected to continue into the future. Ozone depletion in the Arctic is weaker in the CMAM than in observations, which may account for the weak past trend in low temperature extremes. In the future, radiative cooling in the Arctic winter due to climate change is more than compensated by an increase in dynamically driven downwelling over the pole.