971 resultados para Tumor Markers, Biological -- analysis
Resumo:
The distinction between normal and leukemic bone marrow (BM) B-precursors is essential for the diagnosis and treatment monitoring of acute lymphoblastic leukemia (ALL). In order to evaluate the potential use of quantitative fluorescence cytometry (QFC) for this distinction, we studied 21 normal individuals and 40 patients with CD10+ ALL. We characterized the age-related changes of the CD10, CD19, TdT, CD34 and CD79a densities in normal and leukemic BM. Compared to normal adults, the B-precursors from normal children expressed significantly lower values of CD34-specific antibody binding capacity (SABC) (median value of 86.6 vs 160.2 arbitrary units (a.u.) in children and adults, respectively). No significant age-related difference was observed in the expression of the other markers in the normal BM, or in any of the markers in the leukemic BM. Based on the literature, we set the cut-off value for the normal CD10 expression at 45 x 10³ a.u. for both age groups. For the remaining markers we established the cut-off values based on the minimum-maximum values in the normal BM in each age group. The expression of CD10 was higher than the cut-off in 30 ALL cases and in 18 of them there was a concomitant aberrant expression of other markers. In 9 of the 10 CD10+ ALL with normal CD10 SABC values, the expression of at least one other marker was aberrant. In conclusion, the distinction between normal and leukemic cells by QFC was possible in 38/40 CD10+ ALL cases.
Resumo:
We demonstrated that 4 mM butyrate induces apoptosis in murine peritoneal macrophages in a dose- and time-dependent manner as indicated by studies of cell viability, flow cytometric analysis of annexin-V binding, DNA ladder pattern and the determination of hypodiploid DNA content. The activity of caspase-3 was enhanced during macrophage apoptosis induced by butyrate and the caspase inhibitor z-VAD-FMK (100 µM) inhibited the butyrate effect, indicating the major role of the caspase cascade in the process. The levels of butyrate-induced apoptosis in macrophages were enhanced by co-treatment with 1 µg/ml bacterial lipopolysaccharide (LPS). However, our data indicate that apoptosis induced by butyrate and LPS involves different mechanisms. Thus, LPS-induced apoptosis was only observed when macrophages were primed with IFN-gamma and was partially dependent on iNOS, TNFR1 and IRF-1 functions as determined in experiments employing macrophages from various knockout mice. In contrast, butyrate-induced macrophage apoptosis was highly independent of IFN-gamma priming and of iNOS, TNFR1 and IRF-1 functions.
Resumo:
Cancer cachexia induces host protein wastage but the mechanisms are poorly understood. Branched-chain amino acids play a regulatory role in the modulation of both protein synthesis and degradation in host tissues. Leucine, an important amino acid in skeletal muscle, is higher oxidized in tumor-bearing animals. A leucine-supplemented diet was used to analyze the effects of Walker 256 tumor growth on body composition in young weanling Wistar rats divided into two main dietary groups: normal diet (N, 18% protein) and leucine-rich diet (L, 15% protein plus 3% leucine), which were further subdivided into control (N or L) or tumor-bearing (W or LW) subgroups. After 12 days, the animals were sacrificed and their carcass analyzed. The tumor-bearing groups showed a decrease in body weight and fat content. Lean carcass mass was lower in the W and LW groups (W = 19.9 ± 0.6, LW = 23.1 ± 1.0 g vs N = 29.4 ± 1.3, L = 28.1 ± 1.9 g, P < 0.05). Tumor weight was similar in both tumor-bearing groups fed either diet. Western blot analysis showed that myosin protein content in gastrocnemius muscle was reduced in tumor-bearing animals (W = 0.234 ± 0.033 vs LW = 0.598 ± 0.036, N = 0.623 ± 0.062, L = 0.697 ± 0.065 arbitrary intensity, P < 0.05). Despite accelerated tumor growth, LW animals exhibited a smaller reduction in lean carcass mass and muscle myosin maintenance, suggesting that excess leucine in the diet could counteract, at least in part, the high host protein wasting in weanling tumor-bearing rats.
Resumo:
Hepatic fibrosis in patients with non-alcoholic fatty liver disease is associated with progression of the disease. In the present study, we analyzed the discriminative ability of serum laminin, type IV collagen and hyaluronan levels to predict the presence of fibrosis in these patients. In this preliminary report, we studied 30 overweight patients divided into two groups according to the absence (group I, N = 19) or presence (group II, N = 11) of fibrosis in a liver biopsy. Triglycerides, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltranspeptidade, hyaluronan (noncompetitive fluoroassay), type IV collagen, and laminin (ELISA) were determined. Group II presented significantly higher mean laminin, hyaluronan, type IV collagen, and aspartate aminotransferase values, which were due to the correlation between these parameters and the stage of fibrosis in the biopsy (Spearman's correlation coefficient, rS = 0.65, 0.62, 0.53, and 0.49, respectively). Analysis of the ROC curve showed that laminin values >282 ng/ml were those with the best diagnostic performance, with 87% accuracy. Association of laminin with type IV collagen showed improvement in the positive predictive value (100%), but with reduction in diagnostic sensitivity (64%). When compared with the criteria of Ratziu et al. [Gastroenterology (2000) 118: 1117-1123] for the diagnosis of septal fibrosis, laminin values presented a better diagnostic accuracy (83 vs 70%). Determination of extracellular matrix components in serum, especially of laminin, may identify patients with non-alcoholic fatty liver disease and fibrosis and these components may be used as indicators for liver biopsy in these patients.
Resumo:
The aim of the present study was to evaluate the prevalence of HEV, TTV and GBV-C/GBV-C/HGV in patients with acute viral hepatitis A, B and non-A-C. We evaluated sera of 94 patients from a sentinel program who had acute hepatitis A (N = 40), B (N = 42) and non-A-C (N = 12); 71 blood donors served as controls. IgM and anti-HEV IgG antibodies were detected by enzyme immunoassay using commercial kits. TTV and GBV-C/HGV were detected by nested PCR; genotyping was done by sequencing and phylogenetic analysis. Anti-HEV IgG was present in 38, 10 and 17% of patients with hepatitis A, B and non-A-C. Four patients with hepatitis A and 1 with non-A-C hepatitis also had anti-HEV IgM detected in serum. TTV was detected in 21% of patients with acute hepatitis and in 31% of donors. GBV-C/HGV was detected in 9% of patients with hepatitis, and in 10% of donors. We found TTV isolates of genotypes 1, 2, 3, and 4 and GBV-C/HGV isolates of genotypes 1 and 2. Mean aminotransferase levels were lower in patients who were TTV or GBV-C/HGV positive. In conclusion, the detection of anti-HEV IgM in some acute hepatitis A cases suggests co-infection with HEV and hepatitis E could be the etiology of a few cases of sporadic non-A-C hepatitis in Salvador, Brazil. TTV genotype 1, 2, 3 and 4 isolates and GBV-C/HGV genotype 1 and 2 strains are frequent in the studied population. TTV and GBV-C/HGV infection does not appear to have a role in the etiology of acute hepatitis.
Resumo:
The aim of the present study was to compare the efficacy of chemotherapy and support treatment in patients with advanced non-resectable gastric cancer in a systematic review and meta-analysis of randomized clinical trials that included a comparison of chemotherapy and support care treatment in patients diagnosed with gastric adenocarcinoma, regardless of their age, gender or place of treatment. The search strategy was based on the criteria of the Cochrane Base, using the following key words: 1) randomized clinical trials and antineoplastic combined therapy or gastrointestinal neoplasm, 2) stomach neoplasm and drug therapy, 3) clinical trial and multi-modality therapy, 4) stomach neoplasm and drug therapy or quality of life, 5) double-blind method or clinical trial. The search was carried out using the Cochrane, Medline and Lilacs databases. Five studies fulfilled the inclusion criteria, for a total of 390 participants, 208 (53%) receiving chemotherapy, 182 (47%) receiving support care treatment and 6 losses (1.6%). The 1-year survival rate was 8% for support care and 20% for chemotherapy (RR = 2.14, 95% CI = 1.00-4.57, P = 0.05); 30% of the patients in the chemotherapy group and 12% in the support care group attained a 6-month symptom-free period (RR = 2.33, 95% CI = 1.41-3.87, P < 0.01). Quality of life evaluated after 4 months was significantly better for the chemotherapy patients (34%; RR = 2.07, 95% CI = 1.31-3.28, P < 0.01) with tumor mass reduction (RR = 3.32, 95% CI = 0.77-14.24, P = 0.1). Chemotherapy increased the 1-year survival rate of the patients and provided a longer symptom-free period of 6 months and an improvement in quality of life.
Resumo:
The nerve biopsies of 11 patients with pure neuritic leprosy were submitted to routine diagnostic procedures and immunoperoxidase staining with antibodies against axonal (neurofilament, nerve growth factor receptor (NGFr), and protein gene product (PGP) 9.5) and Schwann cell (myelin basic protein, S-100 protein, and NGFr) markers. Two pairs of non-adjacent histological cross-sections of the peripheral nerve were removed for quantification. All the fascicles of the nerve were examined with a 10X-ocular and 40X-objective lens. The immunohistochemistry results were compared to the results of semithin section analysis and clinical and electroneuromyographic data. Neurofilament staining was reduced in 100% of the neuritic biopsies. NGFr positivity was also reduced in 81.8%, PGP staining in 100% of the affected nerves, S100 positivity in 90.9%, and myelin basic protein immunoreactivity in 90.9%. Hypoesthesia was associated with decreased NGFr (81.8%) and PGP staining (90.9%). Reduced potential amplitudes (electroneuromyographic data) were found to be associated with reduced PGP 9.5 (63.6%) and nerve fiber neurofilament staining (45.4%) by immunohistochemistry and with loss of myelinated fibers (100%) by semithin section analysis. On the other hand, the small fibers (immunoreactive dots) seen amid inflammatory cells continued to be present even after 40% of the larger myelinated fibers had disappeared. The present study shows an in-depth view of the destructive effects of leprosy upon the expression of neural markers and the integrity of nerve fiber. The association of these structural changes with the clinical and electroneuromyographic manifestations of leprosy peripheral neuropathy was also discussed.
Resumo:
The prevalence of hepatitis B virus (HBV) in Brazil increases from South to North but moderate to elevated prevalence has been detected in the Southwest of Paraná State. The prevalence of serological markers of HBV was evaluated in 3188 pregnant women from different counties in Paraná State and relevant epidemiological features were described. The prevalence of HBV markers in pregnant women for the state as a whole was 18.5% (95% CI = 17.2-19.9), ranging from 7.2% in Curitiba to 38.5% in Francisco Beltrão. The endemicity of HBV marker prevalence in pregnant women was intermediate in Cascavel, Foz do Iguaçu, and Francisco Beltrão, and low in Curitiba, Londrina, Maringá, and Paranaguá. Multiple logistic regression showed that HBV marker prevalence increased with age, was higher among black women, among women of Italian and German descent, and among women who had family members in neighboring Rio Grande do Sul State. Univariate analysis showed that HBV marker prevalence was also higher among women with no education or only primary education, with a lower family income and whose families originated from the South Region of Brazil. Pregnant women not having positive HBV markers (anti-HBc, HBsAg or anti-HBs detected by ELISA) corresponded to 73.7% of the population studied, implying that HBV vaccination needs to be reinforced in Paraná State. The highest prevalence was found in three counties that received the largest number of families from Santa Catarina and Rio Grande do Sul, where most immigrants were of German or Italian ascendance. This finding probably indicates that immigrants that came to this area brought HBV infection to Southwestern Paraná State.
Resumo:
Chronic hepatitis B (HBV) and C (HCV) virus infections are the most important factors associated with hepatocellular carcinoma (HCC), but tumor prognosis remains poor due to the lack of diagnostic biomarkers. In order to identify novel diagnostic markers and therapeutic targets, the gene expression profile associated with viral and non-viral HCC was assessed in 9 tumor samples by oligo-microarrays. The differentially expressed genes were examined using a z-score and KEGG pathway for the search of ontological biological processes. We selected a non-redundant set of 15 genes with the lowest P value for clustering samples into three groups using the non-supervised algorithm k-means. Fisher’s linear discriminant analysis was then applied in an exhaustive search of trios of genes that could be used to build classifiers for class distinction. Different transcriptional levels of genes were identified in HCC of different etiologies and from different HCC samples. When comparing HBV-HCC vs HCV-HCC, HBV-HCC/HCV-HCC vs non-viral (NV)-HCC, HBC-HCC vs NV-HCC, and HCV-HCC vs NV-HCC of the 58 non-redundant differentially expressed genes, only 6 genes (IKBKβ, CREBBP, WNT10B, PRDX6, ITGAV, and IFNAR1) were found to be associated with hepatic carcinogenesis. By combining trios, classifiers could be generated, which correctly classified 100% of the samples. This expression profiling may provide a useful tool for research into the pathophysiology of HCC. A detailed understanding of how these distinct genes are involved in molecular pathways is of fundamental importance to the development of effective HCC chemoprevention and treatment.
Resumo:
The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α) on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL) for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.
Resumo:
In breast cancer patients submitted to neoadjuvant chemotherapy (4 cycles of doxorubicin and cyclophosphamide, AC), expression of groups of three genes (gene trio signatures) could distinguish responsive from non-responsive tumors, as demonstrated by cDNA microarray profiling in a previous study by our group. In the current study, we determined if the expression of the same genes would retain the predictive strength, when analyzed by a more accessible technique (real-time RT-PCR). We evaluated 28 samples already analyzed by cDNA microarray, as a technical validation procedure, and 14 tumors, as an independent biological validation set. All patients received neoadjuvant chemotherapy (4 AC). Among five trio combinations previously identified, defined by nine genes individually investigated (BZRP, CLPTM1,MTSS1, NOTCH1, NUP210, PRSS11, RPL37A, SMYD2, and XLHSRF-1), the most accurate were established by RPL37A, XLHSRF-1based trios, with NOTCH1 or NUP210. Both trios correctly separated 86% of tumors (87% sensitivity and 80% specificity for predicting response), according to their response to chemotherapy (82% in a leave-one-out cross-validation method). Using the pre-established features obtained by linear discriminant analysis, 71% samples from the biological validation set were also correctly classified by both trios (72% sensitivity; 66% specificity). Furthermore, we explored other gene combinations to achieve a higher accuracy in the technical validation group (as a training set). A new trio, MTSS1, RPL37 and SMYD2, correctly classified 93% of samples from the technical validation group (95% sensitivity and 80% specificity; 86% accuracy by the cross-validation method) and 79% from the biological validation group (72% sensitivity and 100% specificity). Therefore, the combined expression of MTSS1, RPL37 and SMYD2, as evaluated by real-time RT-PCR, is a potential candidate to predict response to neoadjuvant doxorubicin and cyclophosphamide in breast cancer patients.
Resumo:
We evaluated the outcome of 227 patients with acute myeloid leukemia during three decades (period 1 - 1980’s, N = 89; period 2 - 1990’s, N = 73; period 3 - 2000’s, N = 65) at a single institution. Major differences between the three groups included a higher median age, rates of multilineage dysplasia and co-morbidities, and a lower rate of clinical manifestations of advanced leukemia in recent years. The proportion of patients who received induction remission chemotherapy was 66, 75, and 85% for periods 1, 2, and 3, respectively (P = 0.04). The median survival was 40, 77, and 112 days, and the 5-year overall survival was 7, 13, and 22%, respectively (P = 0.01). The median disease-free survival was 266, 278, and 386 days (P = 0.049). Survival expectation for patients with acute myeloid leukemia has substantially improved during this 30-year period, due to a combination of lower tumor burden and a more efficient use of chemotherapy and supportive care.
Resumo:
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue that affects the ocular, skeletal and cardiovascular systems, with a wide clinical variability. Although mutations in the FBN1 gene have been recognized as the cause of the disease, more recently other loci have been associated with MFS, indicating the genetic heterogeneity of this disease. We addressed the issue of genetic heterogeneity in MFS by performing linkage analysis of the FBN1 and TGFBR2 genes in 34 families (345 subjects) who met the clinical diagnostic criteria for the disease according to Ghent. Using a total of six microsatellite markers, we found that linkage with the FBN1 gene was observed or not excluded in 70.6% (24/34) of the families, and in 1 family the MFS phenotype segregated with the TGFBR2 gene. Moreover, in 4 families linkage with the FBN1 and TGFBR2 genes was excluded, and no mutations were identified in the coding region of TGFBR1, indicating the existence of other genes involved in MFS. Our results suggest that the genetic heterogeneity of MFS may be greater that previously reported.
Resumo:
Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex)1.3(DOX)20. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers.
Resumo:
Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.