950 resultados para Transportation Basis
Resumo:
A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal. The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing. In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. S~milabr ehavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments. The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful. A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.
Resumo:
This report describes the results of the research project investigating the use of advanced field data acquisition technologies for lowa transponation agencies. The objectives of the research project were to (1) research and evaluate current data acquisition technologies for field data collection, manipulation, and reporting; (2) identify the current field data collection approach and the interest level in applying current technologies within Iowa transportation agencies; and (3) summarize findings, prioritize technology needs, and provide recommendations regarding suitable applications for future development. A steering committee consisting oretate, city, and county transportation officials provided guidance during this project. Technologies considered in this study included (1) data storage (bar coding, radio frequency identification, touch buttons, magnetic stripes, and video logging); (2) data recognition (voice recognition and optical character recognition); (3) field referencing systems (global positioning systems [GPS] and geographic information systems [GIs]); (4) data transmission (radio frequency data communications and electronic data interchange); and (5) portable computers (pen-based computers). The literature review revealed that many of these technologies could have useful applications in the transponation industry. A survey was developed to explain current data collection methods and identify the interest in using advanced field data collection technologies. Surveys were sent out to county and city engineers and state representatives responsible for certain programs (e.g., maintenance management and construction management). Results showed that almost all field data are collected using manual approaches and are hand-carried to the office where they are either entered into a computer or manually stored. A lack of standardization was apparent for the type of software applications used by each agency--even the types of forms used to manually collect data differed by agency. Furthermore, interest in using advanced field data collection technologies depended upon the technology, program (e.g.. pavement or sign management), and agency type (e.g., state, city, or county). The state and larger cities and counties seemed to be interested in using several of the technologies, whereas smaller agencies appeared to have very little interest in using advanced techniques to capture data. A more thorough analysis of the survey results is provided in the report. Recommendations are made to enhance the use of advanced field data acquisition technologies in Iowa transportation agencies: (1) Appoint a statewide task group to coordinate the effort to automate field data collection and reporting within the Iowa transportation agencies. Subgroups representing the cities, counties, and state should be formed with oversight provided by the statewide task group. (2) Educate employees so that they become familiar with the various field data acquisition technologies.
Resumo:
This investigation was initiated to determine the causes of a rutting problem that occurred on Interstate 80 in Adair County. 1-80 from Iowa 25 to the Dallas County line was opened to traffic in November, 1960. The original pavement consisted of 4-1/2" of asphalt cement concrete over 12" of rolled stone base and 12" of granular subbase. A 5-1/2" overlay of asphalt cement concrete was placed in 1964. In 1970-1972, the roadway was resurfaced with 3" of asphalt cement concrete. In 1982, an asphalt cement concrete inlay, designed for a 10-year life, was placed in the eastbound lane. The mix designs for all courses met or exceeded all current criteria being used to formulate job mixes. Field construction reports indicate .that asphalt usage, densities, field voids and filler bitumen determinations were well within specification limits on a very consistent basis. Field laboratory reports indicate that laboratory voids for the base courses were within the prescribed limits for the base course and below the prescribed limits for the surface course. Instructional memorandums do indicate that extreme caution should be exercised when the voids are at or near the lower limits and traffic is not minimal. There is also a provision that provides for field voids controlling when there is a conflict between laboratory voids and field voids. It appears that contract documents do not adequately address the directions that must be taken when this conflict arises since it can readily be shown that laboratory voids must be in the very low or dangerous range if field voids are to be kept below the maximum limit under the current density specifications. A rut depth survey of January, 1983, identified little or no rutting on this section of roadway. Cross sections obtained in October, 1983, identified rutting which ranged from 0 to 0.9" with a general trend of the rutting to increase from a value of approximately 0.3" at MP 88 to a rut depth of 0.7" at MP 98. No areas of significant rutting were identified in the inside lane. Structural evaluation with the Road Rater indicated adequate structural capacity and also indicated that the longitudinal subdrains were functioning properly to provide adequate soil support values. Two pavement sections taken from the driving lane indicated very little distortion in the lower 7" base course. Essentially all of the distortion had occurred in the upper 2" base course and the 1..;1/2" surface course. Analysis of cores taken from this section of Interstate 80 indicated very little densification of either the surface or the upper or lower base courses. The asphalt cement content of both the Type B base courses and the Type A surface course were substantially higher than the intended asphalt cement content. The only explanation for this is that the salvaged material contained a greater percent of asphalt cement than initial extractions indicated. The penetration and viscosity of the blend of new asphalt cement and the asphalt cement recovered from the salvaged material were relatively close to that intended for this project. The 1983 ambient temperatures were extremely high from June 20 through September 10. The rutting is a result of a combination of adverse factors including, (1) high asphalt content, (2) the difference between laboratory and field voids, (3) lack of intermediate sized crushed particles, (4) high ambient temperatures. The high asphalt content in the 2" upper base course produced an asphalt concrete mix that did not exhibit satisfactory resistance to deformation from heavy loading. The majority of the rutting resulted from distortion of the 2" upper base lift. Heater planing is recommended as an interim corrective action. Further recommendation is to design for a 20-year alternative by removing 2-1/2" of material from the driving lane by milling and replacing with 2-1/2" of asphalt concrete with improved stability. This would be .followed by placing 1-1/2" of high quality resurfacing on the entire roadway. Other recommendations include improved density and stability requirements for asphalt concrete on high traffic roadways.
Resumo:
Fly ash was used to replace 15% of the cement in C3WR and C6WR concrete paving mixes containing ASTM C494 Type A water reducin9 admixtures. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. When Class C ashes were used they were substituted on the basis of 1 pound of ash added for each pound of cement deleted. When Class F was used it was substituted on the basis of 1.25 pounds of ash added for each pound of cement deleted. Compressive strengths of the water reduced mixes, with and without fly ash, were determined at 7, 28, and 56 days of age. In every case except one the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. An excellent correlation existed between the C3WR and C6WR mixes both with and without fly ash substitutions. The freeze-thaw durability of the concrete studied was not affected by presence or absence of fly ash. The data gathered suggests that the present Class C water reduced concrete paving mixes can be modified to allow the substitution of 15% of the cement with an approved fly ash.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
Fly ash was used in this evaluation study to replace 30, 50 and 70 percent of the 400 1bs. of cement currently used in each cu. yd. of portland cement econocrete base paving mix. Two Class "c" ashes and one Class "F" ash from Iowa approved sources were examined in each mix. When Class "c" ashes were used, they were substituted on the basis of 1.0 pound for each pound of cement removed. When Class "F" ash was used, it was substituted on the basis of 1.25 pounds of ash for each pound of cement removed. Compressive strengths with and without fly ash were determined at 7, 28 and 56 days of age. In most cases, strengths were adequate. The freeze/thaw durability of the econocrete mixes studied was not adversely affected by the presence of fly ash. The tests along with erodibility and absorption tests have demonstrated the feasibility of producing econocrete with satisfactory mechanical properties even when relatively low quality and/or locally available aggregate is being used at no sacrifice to strength and/or durability.
Resumo:
According to 23 CFR § 450.214(a), “The State shall develop a long-range statewide transportation plan, with a minimum 20-year forecast period at the time of adoption, that provides for the development and implementation of the multimodal transportation system for the State.” The state transportation plan (Plan) is a document that will address this requirement and serve as a transportation investment guide between now and 2040. Iowa’s most recent plan was developed by the Iowa Department of Transportation and adopted in 1997 through a planning process called Iowa in Motion. Much of Iowa in Motion has been implemented and this Plan, "Iowa in Motion – Planning Ahead," will build on the success of its predecessor. The Plan projects the demand for transportation infrastructure and services to 2040 based on consideration of social and economic changes likely to occur during this time. Iowa’s economy and the need to meet the challenges of the future will continue to place pressure on the transportation system. With this in mind, the Plan will provide direction for each transportation mode, and will support a renewed emphasis on efficient investment and prudent, responsible management of our existing transportation system. In recent years, the Iowa DOT has branded this philosophy as stewardship. As Iowa changes and the transportation system evolves, one constant will be that the safe and efficient movement of Iowans and our products is essential for stable growth in Iowa’s economy. Iowa’s extensive multimodal and multijurisdictional transportation system is a critical component of economic development and job creation throughout the state.
Resumo:
The development of new rail systems in the first part of the 21st century is the result of a wide range of trends that are making it increasingly difficult to maintain regional mobility using the two dominant intercity travel modes, auto and air. These trends include the changing character of the economic structure of industry. The character of the North American industrial structure is moving rapidly from a manufacturing base to a service based economy. This is increasing the need for business travel while the increase in disposable income due to higher salaries has promoted increased social and tourist travel. Another trend is the change in the regulatory environment. The trend towards deregulation has dramatically reduced the willingness of the airlines to operate from smaller airports and the level of service has fallen due to the creation of hub and spoke systems. While new air technology such as regional jets may mitigate this trend to some degree in medium-size airports, smaller airports will continue to lose out. Finally, increasing environmental concerns have reduced the ability of the automobile to meet intercity travel needs because of increased suburban congestion and limited highway capacity in big cities. Against this background the rail mode offers new options due to first, the existing rail rights-of-way offering direct access into major cities that, in most cases, have significant capacity available and, second, a revolution in vehicle technology that makes new rail rolling stock faster and less expensive to purchase and operate. This study is designed to evaluate the potential for rail service making an important contribution to maintaining regional mobility over the next 30 to 50 years in Iowa. The study evaluates the potential for rail service on three key routes across Iowa and assesses the impact of new train technology in reducing costs and improving rail service. The study also considers the potential for developing the system on an incremental basis. The service analysis and recommendations do not involve current Amtrak intercity service. That service is presumed to continue on its current route and schedule. The study builds from data and analyses that have been generated for the Midwest Rail Initiative (MWRI) Study. For example, the zone system and operating and capital unit cost assumptions are derived from the MWRI study. The MWRI represents a cooperative effort between nine Midwest states, Amtrak and the Federal Railroad Administration (FRA) contracting with Transportation Economics & Management Systems, Inc. to evaluate the potential for a regional rail system. The 1 The map represents the system including the decision on the Iowa route derived from the current study. Iowa Rail Route Alternatives Analysis TEMS 1-2 system is to offer modern, frequent, higher speed train service to the region, with Chicago as the connecting hub. Exhibit 1-1 illustrates the size of the system, and how the Iowa route fits in to the whole.
Resumo:
The 2009 Iowa Railroad System Plan details the state’s role in providing and preserving adequate, safe and efficient rail transportation services to Iowans. The plan is intended to serve as a guide for decision makers and provides a basis for future Iowa DOT policy, funding priorities and programming decisions that affect rail transportation service in Iowa. The primary purpose of the 2009 Iowa Railroad System Plan is to guide the Iowa DOT in pursuing actions that maintain and improve railroad transportation in Iowa. The plan is a component of the Iowa Statewide Transportation Plan known as “Iowa in Motion.” This plan considers railroads from an intermodal perspective. Many commodities that move by rail also move by other modes (principally trucks) during part of their journey from origin to destination. The same is true of persons who use rail passenger service to make trips and who must also rely on other modes to access rail service. Therefore, railroads are part of larger intermodal freight and passenger transportation systems.
Resumo:
The Iowa DOT, created by the Iowa Legislature, began operating July 1, 1975. The newly formed Department of Transportation had a staff of 4,568 full-time equivalents (FTEs). These employees and their responsibilities came from the Highway Commission, Reciprocity Board, Aeronautics Commission, and parts of the Commerce Commission, Department of Revenue and Finance, Department of Public Safety and the Energy Policy Council. The Iowa DOT continually looks at ways to become more efficient in serving our customers. As a result, the current workforce equals approximately 2,818 full-time employees. The seven transportation commissioners set policy for the department and are appointed by the governor, with no more than four from one political party. Membership on the commission is gender-balanced. Commissioners are confirmed by the Iowa Senate and serve on a staggered basis for four-year terms. Commission meetings are usually held monthly in Ames. The meetings are open to the public and follow a printed agenda.
Resumo:
Report on the Iowa Department of Transportation for the year ended June 30, 2011
Investigation of Electromagnetic Gauges for Determining In-Place HMA Density, Final Report, May 2007
Resumo:
Density is an important component of hot-mix asphalt (HMA) pavement quality and long-term performance. Insufficient density of an in-place HMA pavement is the most frequently cited construction-related performance problem. This study evaluated the use of electromagnetic gauges to nondestructively determine densities. Field and laboratory measurements were taken with two electromagnetic gauges—a PaveTracker and a Pavement Quality Indicator (PQI). Test data were collected in the field during and after paving operations and also in a laboratory on field mixes compacted in the lab. This study revealed that several mix- and project-specific factors affect electromagnetic gauge readings. Consequently, the implementation of these gauges will likely need to be done utilizing a test strip on a project- and mix-specific basis to appropriately identify an adjustment factor for the specific electromagnetic gauge being used for quality control and quality assurance (QC/QA) testing. The substantial reduction in testing time that results from employing electromagnetic gauges rather than coring makes it possible for more readings to be used in the QC/QA process with real-time information without increasing the testing costs.
Resumo:
For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.
Resumo:
Weekly letting report.
Resumo:
Weekly letting report.