906 resultados para Transfer of Training.
Resumo:
The purpose of this study was to investigate the effectiveness of training educators in the pre-behavioral intervention process of functional behavioral assessment. An original evaluation instrument was developed entitled, The Survey for Students Exhibiting Challenging Behavior. The instrument included measures of participating educators, knowledge of function of problem behavior and their ability to generate recommendations for a behavior intervention plan. The instrument was distributed to schools in a large urban district and completed by special educators. Educators trained and untrained in the functional behavioral assessment process were compared in the study. ^ The study incorporated a post-test only design. All instruments were analyzed using a factorial ANOVA. Those educators who were trained in the district functional behavioral assessment program answered general questions related to function of problem behavior significantly better than those who did not receive training. There is no significant difference between educators on their ability to generate recommendations for behavior intervention plans. It is important that educators receive training in functional behavioral assessment to gain an understanding of the basic notions being function of problem behavior. Current training does not translate into educators' ability to make strong recommendations for behavior intervention plans. ^
Resumo:
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.
Resumo:
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.
Resumo:
This deliverable summarizes, validates and explains the purpose and concept behind the RAGE knowledge and innovation management platform as a self-sustainable Ecosystem, supporting innovation processes in the Applied Gaming (AG) industry. The Ecosystem portal will be developed with particular consideration of the demand and requirements of small and medium sized game developing companies, education providers and related stakeholders like AG researchers and AG end-users. The innovation potential of the new platform underlies the following factors: a huge, mostly entire collection of community specific knowledge (e.g., content like media objects, software components and best practices), a structured approach of knowledge access, search and browse, collaboration tools as well as social network analysis tools to foster efficient knowledge creation and transformation processes into marketable technology assets. The deliverable provides an overview of the current status and the remaining work to come, preceding the final version in month 48 of the RAGE project.
Resumo:
Combined conduction–convection–radiation heat transfer is investigated numerically in a micro-channel filled with a saturated cellular porous medium, with the channel walls held at a constant heat flux. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous–fluid system are studied by considering hydrodynamically fully developed flow and applying the Darcy–Brinkman flow model. One energy equation model based on the local thermal equilibrium condition is adopted to evaluate the temperature field within the porous medium. Combined conduction and radiation heat transfer is treated as an effective conduction process with a temperature-dependent effective thermal conductivity. Results are reported in terms of the average Nusselt number and dimensionless temperature distribution, as a function of velocity slip coefficient, temperature jump coefficient, porous medium shape parameter and radiation parameters. Results show that increasing the radiation parameter (Tr)(Tr) and the temperature jump coefficient flattens the dimensionless temperature profile. The Nusselt numbers are more sensitive to the variation in the temperature jump coefficient rather than to the velocity slip coefficient. Such that for high porous medium shape parameter, the Nusselt number is found to be independent of velocity slip. Furthermore, it is found that as the temperature jump coefficient increases, the Nusselt number decrease. In addition, for high temperature jump coefficients, the Nusselt number is found to be insensitive to the radiation parameters and porous medium shape parameter. It is also concluded that compared with the conventional macro-channels, wherein using a porous material enhances the rate of heat transfer (up to about 40 % compared to the clear channel), insertion of a porous material inside a micro-channel in slip regime does not effectively enhance the rate of heat transfer that is about 2 %.
Resumo:
The influence of the work environment on the transfer of newly trained supervisory skills was examined. Participants were 505 supermarket managers from 52 stores. The work environment was operationalized in terms of transfer of training climate and continuous-learning culture. Climate and culture were hypothesized to have both direct and moderating effects on posttraining behaviors. Accounting for pretraining behaviors and knowledge gained in training, the results from a series of LISREL analyses showed that both climate and culture were directly related to posttraining behaviors. In particular, the social support system appeared to play a central role in the transfer of training. Moderating effects were not found. Implications for enhancing the transfer of training are discussed.
Resumo:
Physical exercise programmes are routinely prescribed in clinical practice to treat impairments, improve activity and participation in daily life because of their known physiological, health and psychological benefits (RCP, 2009). Progressive resistance exercise is a type of exercise prescribed specifically to improve skeletal muscle strength (Latham et al., 2004). The effectiveness of progressive resistance exercise varies considerably between studies and populations. This thesis focuses on how training parameters influence the delivery of progressive resistance exercise. In order to appropriately evaluate the influence of training parameters, this thesis argues the need to record training performance and the total work completed by participants as prescribed by training protocols. In the first study, participants were taken through a series of protocols differentiated by the intensity and volume of training. Training intensity was defined as a proportion of the mean peak torque achieved during maximal voluntary contractions and was set at 80% and 40% respectively of the MVC mean peak torque. Training volume was defined as the total external work achieved over the training period. Measures of training performance were developed to accurately report the intensity, repetitions and work completed during the training period. A second study evaluated training performance of the training protocols over repeated sessions. These protocols were then applied to 3 stroke survivors. Study 1 found sedentary participants could achieve a differentiated training intensity. Participants completing the high and low intensity protocols trained at 80% and 40% respectively of the MVC mean peak torque. The total work achieved in the high intensity low repetition protocol was lower than the total work achieved in the low intensity high repetition protocol. With repeated practice, study 2 found participants were able to improve in their ability to perform manoeuvres as shown by a reduction in the variation of the mean training intensity achieving total work as specified by the protocol to a lower margin of error. When these protocols were applied to 3 stroke survivors, they were able to achieve the specified training intensity but they were not able to achieve the total work as expected for the protocol. This is likely to be due to an inability in achieving a consistent force throughout the contraction. These results demonstrate evaluation of training characteristics and support the need to record and report training performance characteristics during progressive resistance exercise, including the total work achieved, in order to elucidate the influence of training parameters on progressive resistance exercise. The lack of accurate training performance may partly explain the inconsistencies between studies on optimal training parameters for progressive resistance exercise.
Resumo:
Spelling is an important literacy skill, and learning to spell is an important component of learning to write. Learners with strong spelling skills also exhibit greater reading, vocabulary, and orthographic knowledge than those with poor spelling skills (Ehri & Rosenthal, 2007; Ehri & Wilce, 1987; Rankin, Bruning, Timme, & Katkanant, 1993). English, being a deep orthography, has inconsistent sound-to-letter correspondences (Seymour, 2005; Ziegler & Goswami, 2005). This poses a great challenge for learners in gaining spelling fluency and accuracy. The purpose of the present study is to examine cross-linguistic transfer of English vowel spellings in Spanish-speaking adult ESL learners. The research participants were 129 Spanish-speaking adult ESL learners and 104 native English-speaking GED students enrolled in a community college located in the South Atlantic region of the United States. The adult ESL participants were in classes at three different levels of English proficiency: advanced, intermediate, and beginning. An experimental English spelling test was administered to both the native English-speaking and ESL participants. In addition, the adult ESL participants took the standardized spelling tests to rank their spelling skills in both English and Spanish. The data were analyzed using robust regression and Poisson regression procedures, Mann-Whitney test, and descriptive statistics. The study found that both Spanish spelling skills and English proficiency are strong predictors of English spelling skills. Spanish spelling is also a strong predictor of level of L1-influenced transfer. More proficient Spanish spellers made significantly fewer L1-influenced spelling errors than less proficient Spanish spellers. L1-influenced transfer of spelling knowledge from Spanish to English likely occurred in three vowel targets (/ɑɪ/ spelled as ae, ai, or ay, /ɑʊ/ spelled as au, and /eɪ/ spelled as e). The ESL participants and the native English-speaking participants produced highly similar error patterns of English vowel spellings when the errors did not indicate L1-influenced transfer, which implies that the two groups might follow similar trajectories of developing English spelling skills. The findings may help guide future researchers or practitioners to modify and develop instructional spelling intervention to meet the needs of adult ESL learners and help them gain English spelling competence.
Resumo:
The thesis focuses on military crisis management and strategy.
Resumo:
,
Resumo:
The article introduces the concept of E-Science and its importance in the generation of knowledge. This article also stresses the need to transfer that knowledge, before this, the School of Library and Information Science at the University of Costa Rica could gothrough such means as the online magazine E-Ciencias de la Información.It explains why we chose the form of electronic publication and describes the development strategy, architecture design and technological requirements. The article concludes that electronic publications have penetrated hard in the academic world and are increasingly cited, so that their contribution as vehicles for dissemination of knowledge is undeniable.
Resumo:
This article examines regulatory governance of the post-initial training market in The Netherlands. From an historical perspective on policy formation processes, it examines market formation in terms of social, economic, and cultural factors in the development of provision and demand for post-initial training; the roles of stakeholders in the longterm construction of regulatory governance of the market; regulation of and public providers; policy responses to market failure; and tripartite division of responsibilities between the state, social partners, commercial and publicly-funded providers. Historical description and analysis examine policy narratives of key stakeholders with reference to: a) influence of societal stakeholders on regulatory decision-making; b) state regulation of the post-initial training market; c) public intervention regulating the market to prevent market failure; d) market deregulation, competition, employability and individual responsibility; and, e) regulatory governance to prevent ‘allocative failure’ by the market in non-delivery of post-initial training to specific target groups, particularly the low-qualified. Dominant policy narratives have resulted in limited state regulation of the supply-side, a tripartite system of regulatory governance by the state, social partners and commercial providers as regulatory actors. Current policy discourses address interventions on the demand-side to redistribute structures of opportunity throughout the life courses of individuals. Further empirical research from a comparative historical perspective is required to deepen contemporary understandings of regulatory governance of markets and the commodification of adult learning in knowledge societies and information economies. (DIPF/Orig.)
Resumo:
One of the most popular sports globally, soccer has seen a rise in the demands of the game over recent years. An increase in intensity and playing demands, coupled with growing social and economic pressures on soccer players means that optimal preparation is of paramount importance. Recent research has found the modern game, depending on positional role, to consist of approximately 60% more sprint distance in the English Premier League, which was also found to be the case for frequency and success of discrete technical actions (Bush et al., 2015). As a result, the focus on soccer training and player preparedness is becoming more prevalent in scientific research. By designing the appropriate training load, and thus periodization strategies, the aim is to achieve peak fitness in the most efficient way, whilst minimising the risk of injury and illness. Traditionally, training intensity has been based on heart rate responses, however, the emergence of tracking microtechnology such as global positioning system (GPS) and inertial sensors are now able to further quantify biomechanical load as well as physiological stress. Detailed pictures of internal and external loading indices such as these then combine to produce a more holistic view of training load experience by the player during typical drills and phases of training in soccer. The premise of this research is to gain greater understanding of the physical demands of common training methodologies in elite soccer to support optimal match performance. The coaching process may then benefit from being able to prescribe the most effective training to support these. The first experimental chapter in this thesis began by quantify gross training loads of the pre-season and in-season phases in soccer. A broader picture of the training loads inherent in these distinct phases brought more detail as to the type and extent of external loading experienced by soccer players at these times, and how the inclusion of match play influences weekly training rhythms. Training volume (total distance) was found to be high at the start compared to the end of pre-season (37 kilometres and 28 kilometres), where high cardiovascular loads were attained as part of the conditioning focus. This progressed transiently, however, to involve higher-speed, acceleration and change-of-direction stimuli at the end of pre-season compared to the start and to that in-season (1.18 kilometres, 0.70 kilometres and 0.42 kilometres high-intensity running; with 37, 25 and 23 accelerations >3m/s2 respectively) . The decrease in volume and increase in maximal anaerobic activity was evident in the training focus as friendly matches were introduced before the competitive season. The influence of match-play as being a large physical dose in the training week may then determine the change in weekly periodisation and how resulting training loads applied and tapered, if necessary. The focus of research was then directed more specifically to the most common mode of training in soccer, that also featured regularly in the pre-season period in the present study, small-sided games (SSG). The subsequent studies examined numerous manipulations of this specific form of soccer conditioning, such as player numbers as well as absolute and relative playing space available. In contrast to some previous literature, changing the number of players did not seem to influence training responses significantly, although playing format in the possession style brought about larger effects for heart rate (89.9%HRmax) and average velocity (7.6km/h-1). However, the following studies (Chapters 5, 6 and 7) revealed a greater influence of relative playing space available to players in SSG. The larger area at their disposal brought about greater aerobic responses (~90%HRmax), by allowing higher average and peak velocities (>25km/h-1), as well as greater distance acceleration behaviour at greater thresholds (>2.8m/s2). Furthermore, the data points towards space as being a large determinant in strategy of the player in small-sided games (SSG), subsequently shaping their movement behaviour and resulting physical responses. For example, higher average velocities in a possession format (8km/h-1) reflects higher work rate and heart rate load but makes achieving significant neuromuscular accelerations at a high level difficult given higher starting velocities prior to the most intense accelerations (4.2km/h-1). By altering space available and even through intentional numerical imbalances in team numbers, it may be easier for coaches to achieve the desired stimulus for the session or individual player, whether that is for aerobic and neuromuscular conditioning. Large effects were found for heart rate being higher in the underloaded team (85-90%HRmax) compared to the team with more players (80-85%HRmax) as well as for RPE (5AU versus 7AU). This was also apparent for meterage and therefore average velocity. It would also seem neuromuscular load through high acceleration and deceleration efforts were more pronounced with less numbers (given the need to press and close down opponents, and in a larger area relative to the number of players on the underloaded team. The peak accelerations and deceleration achieved was also higher when playing with less players (3-6.2m/s2 and 3-6.1m/s2) Having detailed ways in which to reach desired physical loading responses in common small training formats, Chapter 8 compared SSG to larger 9v9 formats with full-size 11v11 friendly matches. This enabled absolute and relative comparisons to be made and to understand the extent to which smaller training formats are able to replicate the required movements to be successful in competition. In relative terms, it was revealed that relative acceleration distance and Player Load were higher in smaller 4v4 games than match-play (1.1m.min-1 and 0.3m.min-1 >3m/s2; 16.9AU versus 12AU). Although the smallest format did not replicate the high-velocity demands of matches, the results confirmed their efficacy in providing significant neuromuscular load during the training week, which may then be supplemented by high-intensity interval running in order to gain exposure to more maximal speed work. In summary, the data presented provide valuable information from GPS and inertial sensor microtechnology which may then be used to understand training better to manipulate types of load according to physical conditioning objectives. For example, a library of resources to direct planning of drills of varying cardiovascular, neuromuscular and perceptual load can be created to give more confidence in session outcomes. Combining external and internal load data of common soccer training drills, and their application across different phases and training objectives may give coaches a powerful tool to plan and periodize training.