972 resultados para Traffic Emissions, Aerosol, PM10, PM2.5, Submicrometer Particles


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one-way nested domains using the GFS meteorological data and the TNO MACC II emissions. The 48 hour forecasts were run for each day of the winter and summer period of 2014 and there is only a small decrease in model performance for winter with respect to forecast lead time. The model in general captures the variability in observed PM10 concentrations for most of the stations. However, for some locations and specific episodes, the model performance is poor and the results cannot yet be used by official authorities. We argue that a higher resolution sector-based emission data will be helpful for this analysis in connection with a focus on planetary boundary layer processes in WRF-Chem and their impact on the initial distribution of emissions on both time and space.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The majority of studies investigated ambient particles, although in most industrialized countries people spend most of their time indoors and significant emissions of fine and ultrafine particles leading to human exposure are caused by various indoor tasks, including cleaning tasks. Objective: To characterize the occupational exposure to particles during cleaning of hotel's rooms. Methodology: Measurements of mass concentration and particle number concentration were performed before and during cleaning tasks in two rooms with different floor types (wood and carpet) with the equipment Lighthouse, model 3016 IAQ. Results: Considering mass concentration, particles with higher were responsable for higher leves of contamination, particularly PM5.0 and PM10.0. However, considering the particle number concentration, the smaller particle size obtained the higher values. Conclusion: It was observed higher number of particles of the smaller size in all tasks, which is associated with worse health effects. It was observed that the room with wood in the floor has lower values when compared to the room with carpet. The tasks with greater exposure were the 'vacuuming' and 'clean up powder'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nos últimos anos, tem-se assistido a um crescimento no interesse do estudo da ressuspensão de pó de estrada, dado o reconhecimento da importância que esta fração representa para os níveis de partículas atmosféricas em ambiente urbano. Dada a prematuridade deste tema e, de forma a compreender e conhecer a sua contribuição e caracterização, realizou-se um estudo sobre a ressuspensão de pó de estrada urbano para as cidades do Porto e Braga. No âmbito do projeto AIRUSE e URBE, realizaram-se amostragens de PM10 no terreno com um dispositivo de amostragem móvel e em ambiente laboratorial com uma câmara de ressuspensão, sendo posteriormente analisado o seu conteúdo carbonoso por um sistema de análise termo-ótico de transmitância e, os elementos por ICP-MS e ICP-AES. Da campanha in situ resultaram cargas de PM10 compreendidas entre 0.190 e 49.5 mg.m-2 para a cidade do Porto e 0.577 mg.m-2 para o túnel rodoviário em Braga. As amostras caracterizam-se por serem dominadas pelos elementos Al, Fe, K, e Ca e conterem enriquecimentos de Sb, Fe, Cu, Sn e Zn, fruto da contaminação antropogénica da atividade rodoviária. No que respeita às amostragens em laboratório, utilizou-se uma câmara de ressuspensão e o dispositivo móvel aplicado na campanha anteriormente descrita para estudar e caracterizar a fração PM10 do pó de estrada urbano proveniente do Túnel Avenida da Liberdade (Braga). Os resultados obtidos para as duas metodologias foram de um modo geral similares, com o carbono total a representar cerca de 6% da massa total de PM10. Esta última é composta maioritariamente por Al, Fe, Ca e K, elementos característicos da crosta terrestre. Quanto ao fatores de enriquecimento calculados, denotou-se a presença de Sb, Zn, Cu e Sn, tendo-se associando ao desgaste dos travões e pneus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is actually the composition of two separate studies aimed at further understanding the role of incomplete combustion products on atmospheric chemistry. The first explores the sensitivity of black carbon (BC) forcing to aerosol vertical location since BC has an increased forcing per unit mass when it is located above reflective clouds. We used a column radiative transfer model to produce globally-averaged values of normalized direct radiative forcing (NDRF) for BC over and under different types of clouds. We developed a simple column-weighting scheme based on the mass fractions of BC that are over and under clouds in measured vertical profiles. The resulting NDRF is in good agreement with global 3-D model estimates, supporting the column-weighted model as a tool for exploring uncertainties due to diversity in vertical distribution. BC above low clouds accounts for about 20% of the global burden but 50% of the forcing. We estimate maximum-minimum spread in NDRF due to modeled profiles as about 40% and uncertainty as about 25%. Models overestimate BC in the upper troposphere compared with measurements; modeled NDRF might need to be reduced by about 15%. Redistributing BC within the lowest 4 km of the atmosphere affects modeled NDRF by only about 5% and cannot account for very high forcing estimates. The second study estimated global year 2000 carbon monoxide (CO) emissions using a traditional bottom-up inventory. We applied literature-derived emission factors to a variety of fuel and technology combinations. Combining these with regional fuel use and production data we produced CO emissions estimates that were separable by sector, fuel type, technology, and region. We estimated year 2000 stationary source emissions of 685.9 Tg/yr and 885 Tg/yr if we included adopted mobile sources from EDGAR v3.2FT2000. Open/biomass burning contributed most significantly to global CO burden, while the residential sector, primarily in Asia and Africa, were the largest contributors with respect to contained combustion sources. Industry production in Asia, including brick, cement, iron and steel-making, also contributed significantly to CO emissions. Our estimates of biofuel emissions are lower than most previously published bottom-up estimates while our other fuel emissions are generally in good agreement. Our values are also universally lower than recently estimated CO emissions from models using top-down methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extended exposure to ultrafine particles (UFPs) may lead to consequences in children due to their increased susceptibility when compared to older individuals. Since children spend in average 8 h/day in primary schools, assessing the number concentrations of UFPs in these institutions is important in order to evaluate the health risk for children in primary schools caused by indoor air pollution. Thus, the purpose of this study was to assess and determine the sources of indoor UFP number concentrations in urban and rural Portuguese primary schools. Indoor and outdoor ultrafine particle (UFP) number concentrations were measured in six urban schools (US) and two rural schools (RS) located in the north of Portugal, during the heating season. The mean number concentrations of indoor UFPs were significantly higher in urban schools than in rural ones (10.4 × 10(3) and 5.7 × 10(3) pt/cm(3), respectively). Higher UFP levels were associated with higher squared meters per student, floor levels closer to the ground, chalk boards, furniture or floor covering materials made of wood and windows with double-glazing. Indoor number concentrations of ultrafine-particles were inversely correlated with indoor CO2 levels. In the present work, indoor and outdoor concentrations of UFPs in public primary schools located in urban and rural areas were assessed, and the main sources were identified for each environment. The results not only showed that UFP pollution is present in augmented concentrations in US when compared to RS but also revealed some classroom/school characteristics that influence the concentrations of UFPs in primary schools.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Children spend a large part of their time at schools, which might be reflected as chronic exposure. Ultrafine particles (UFP) are generally associated with a more severe toxicity compared to fine and coarse particles, due to their ability to penetrate cell membranes. In addition, children tend to be more susceptible to UFP-mediated toxicity compared to adults, due to various factors including undeveloped immune and respiratory systems and inhalation rates. Thus, the purpose of this study was to determine indoor UFP number concentrations in Portuguese primary schools. Ultrafine particles were sampled between January and March 2014 in 10 public primary schools (35 classrooms) located in Porto, Portugal. Overall, the average indoor UFP number concentrations were not significantly different from outdoor concentrations (8.69 × 10(3) vs. 9.25 × 10(3) pt/cm(3), respectively; considering 6.5 h of indoor occupancy). Classrooms with distinct characteristics showed different trends of indoor UFP concentrations. The levels of carbon dioxide were negatively correlated with indoor UFP concentrations. Occupational density was significantly and positively correlated with UFP concentrations. Although the obtained results need to be interpreted with caution since there are no guidelines for UFP levels, special attention needs to be given to source control strategies in order to reduce major particle emissions and ensure good indoor air quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laboratory chamber experiments are used to investigate formation of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors under a variety of environmental conditions. Simulations of these experiments test our understanding of the prevailing chemistry of SOA formation as well as the dynamic processes occurring in the chamber itself. One dynamic process occurring in the chamber that was only recently recognized is the deposition of vapor species to the Teflon walls of the chamber. Low-volatility products formed from the oxidation of volatile organic compounds (VOCs) deposit on the walls rather than forming SOA, decreasing the amount of SOA formed (quantified as the SOA yield: mass of SOA formed per mass of VOC reacted). In this work, several modeling studies are presented that address the effect of vapor wall deposition on SOA formation in chambers.

A coupled vapor-particle dynamics model is used to examine the competition among the rates of gas-phase oxidation to low volatility products, wall deposition of these products, and mass transfer to the particle phase. The relative time scales of these rates control the amount of SOA formed by affecting the influence of vapor wall deposition. Simulations show that an effect on SOA yield of changing the vapor-particle mass transfer rate is only observed when SOA formation is kinetically limited. For systems with kinetically limited SOA formation, increasing the rate of vapor-particle mass transfer by increasing the concentration of seed particles is an effective way to minimize the effect of vapor wall deposition.

This coupled vapor-particle dynamics model is then applied to α-pinene ozonolysis SOA experiments. Experiments show that the SOA yield is affected when changing the oxidation rate but not when changing the rate of gas-particle mass transfer by changing the concentration of seed particles. Model simulations show that the absence of an effect of changing the seed particle concentration is consistent with SOA formation being governed by quasi-equilibrium growth, in which gas-particle equilibrium is established much faster than the rate of change of the gas-phase concentration. The observed effect of oxidation rate on SOA yield arises due to the presence of vapor wall deposition: gas-phase oxidation products are produced more quickly and condense preferentially onto seed particles before being lost to the walls. Therefore, for α-pinene ozonolysis, increasing the oxidation rate is the most effective way to mitigate the influence of vapor wall deposition.

Finally, the detailed model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to simulate α-pinene photooxidation SOA experiments. Unexpectedly, α-pinene OH oxidation experiments show no effect when changing either the oxidation rate or the vapor-particle mass transfer rate, whereas GECKO-A predicts that changing the oxidation rate should drastically affect the SOA yield. Sensitivity studies show that the assumed magnitude of the vapor wall deposition rate can greatly affect conclusions drawn from comparisons between simulations and experiments. If vapor wall loss in the Caltech chamber is of order 10-5 s-1, GECKO-A greatly overpredicts SOA during high UV experiments, likely due to an overprediction of second-generation products. However, if instead vapor wall loss in the Caltech chamber is of order 10-3 s-1, GECKO-A greatly underpredicts SOA during low UV experiments, possibly due to missing autoxidation pathways in the α-pinene mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The practice of burning sugarcane obtained by non-mechanized harvesting exposes workers and the people of neighboring towns to high concentrations of particulate matter (PM) that is harmful to health, and may trigger a series of cardiorespiratory diseases. The aim of this study was to analyze the chemical composition of the micro-particles coming from sugarcane burning residues and to verify the effects of this micro-particulate matter on lung and tracheal tissues. Micro-particulate matter (PM10) was obtained by dissolving filter paper containing burnt residues in NaCl solution. This material was instilled into the Wistar rats' nostrils. Histological analyses (hematoxylin and eosin - HE) of cardiac, lung and tracheal tissues were performed. Inflammatory mediators were measured in lung tissues by using ELISA. The chemical composition of the particulate material revealed a large quantity of the phthalic acid ester, high concentrations of phenolic compounds, anthracene and polycyclic aromatic hydrocarbons (PAH). Histological analysis showed a reduction in subjacent conjunctive tissue in the trachea, lung inflammation with inflammatory infiltrate formation and reduction of alveolar spaces and a significant increase (p<0.05) in the release of IL-1α, IL-1β, IL-6, and INF-γ in the group treated with PM10 when compared to the control group. We concluded that the burning sugarcane residues release many particles, which have toxic chemical compounds. The micro-particulate matter can induce alterations in the respiratory system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luminescence properties of Eu(3+) doped germanate glasses containing either silver or gold nanoparticles (NPs) were investigated for excitation at 405 nm. Enhanced emissions and luminescence quenching of the Eu(3+) transitions in the range from 570 to 720 nm were observed for samples having various concentrations of metallic NPs. Electric-dipole and magnetic-dipole transitions that originate from the Eu(3+) level (5)D(0) exhibit large enhancement due to the presence of the metallic NPs. The results suggest that the magnetic response of rare-earth doped metal-dielectric composites at optical frequencies can be as strong as their electric response due to the confinement of the optical magnetic field. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431347]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background This study aimed to evaluate the association between the total suspended particles (TSP) generated from burning sugar cane plantations and the incidence of hospital admissions from hypertension in the city of Araraquara. Methods The study was an ecological time-series study. Total daily records of hypertension (ICD 10th I10-15) were obtained from admitted patients of all ages in a hospital in Araraquara, Sao Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (mu g/m(3)) was obtained using a Handi-Vol sampler placed in downtown Araraquara. The local airport provided daily measures of temperature and humidity. In generalised linear Poisson regression models, the daily number of hospital admissions for hypertension was considered to be the dependent variable and the daily TSP concentration the independent variable. Results TSP presented a lagged effect on hypertension admissions, which was first observed 1 day after a TSP increase and remained almost unchanged for the following 2 days. A 10 mu g/m(3) increase in the TSP 3 day moving average lagged in 1 day led to an increase in hypertension-related hospital admissions during the harvest period (12.5%, 95% CI 5.6% to 19.9%) that was almost 30% higher than during non-harvest periods (9.0%, 95% CI 4.0% to 14.3%). Conclusions Increases in TSP concentrations were associated with hypertension-related hospital admissions. Despite the benefits of reduced air pollution in urban cities achieved by using ethanol produced from sugar cane to power automobiles, areas where the sugar cane is produced and harvested were found to have increased public health risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amazon Basin provides an excellent environment for studying the sources, transformations, and properties of natural aerosol particles and the resulting links between biological processes and climate. With this framework in mind, the Amazonian Aerosol Characterization Experiment (AMAZE-08), carried out from 7 February to 14 March 2008 during the wet season in the central Amazon Basin, sought to understand the formation, transformations, and cloud-forming properties of fine-and coarse-mode biogenic aerosol particles, especially as related to their effects on cloud activation and regional climate. Special foci included (1) the production mechanisms of secondary organic components at a pristine continental site, including the factors regulating their temporal variability, and (2) predicting and understanding the cloud-forming properties of biogenic particles at such a site. In this overview paper, the field site and the instrumentation employed during the campaign are introduced. Observations and findings are reported, including the large-scale context for the campaign, especially as provided by satellite observations. New findings presented include: (i) a particle number-diameter distribution from 10 nm to 10 mu m that is representative of the pristine tropical rain forest and recommended for model use; (ii) the absence of substantial quantities of primary biological particles in the submicron mode as evidenced by mass spectral characterization; (iii) the large-scale production of secondary organic material; (iv) insights into the chemical and physical properties of the particles as revealed by thermodenuder-induced changes in the particle number-diameter distributions and mass spectra; and (v) comparisons of ground-based predictions and satellite-based observations of hydrometeor phase in clouds. A main finding of AMAZE-08 is the dominance of secondary organic material as particle components. The results presented here provide mechanistic insight and quantitative parameters that can serve to increase the accuracy of models of the formation, transformations, and cloud-forming properties of biogenic natural aerosol particles, especially as related to their effects on cloud activation and regional climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.