995 resultados para Tower Hill Road Site (Gilberts, Ill.)
Resumo:
Introduction: In premolar extraction cases, root parallelism is recommended to preserve the stability of space closures. The influence of the degree of root parallelism on relapse of tooth extraction spaces has been a controversial topic in the literature. The aim of this study was to compare the angle between the long axes of the canine and the second premolarin patients with and without stability of extraction-space closures. Methods: A sample of 56 patients, treated with 4 premolar extractions, was divided into 2 groups: group 1, consisting of 25 patients with reopening of extraction spaces; and group 2, consisting of 31 patients without reopening of extraction spaces. Panoramic radiographs of each patient were analyzed at the posttreatment and 1-year posttreatment stages. The data were statistically analyzed by using chi-square tests, t tests, analysis of variance (ANOVA), and Pearson correlation coefficients. Results: The results showed that the groups did not differ regarding the angle between the canine and the second premolar, and there was no correlation between angular changes and reopening of extraction spaces, showing that dental angular changes are not determining factors for relapse, and other factors should be investigated. Conclusions: The final angle and the posttreatment changes observed in the angle between the long axes of the canine and the second premolar showed no influence on the relapse of extraction spaces. (Am J Orthod Dentofacial Orthop 2011; 139: e505-e510)
Resumo:
Mass spectrometric U-series dating of speleothems from Tangshan Cave, combined with ecological and paleoclimatic evidence, indicates that Nanjing Man, a typical Homo erectus morphologically correlated with Peking Man at Zhoukoudian, should be at least 580 k.y. old, or more likely lived during the glacial oxygen isotope stage 16 (similar to 620 ka). Such an age estimate, which is similar to 270 ka older than previous electron spin resonance and alpha counting U-series dates, has significant implications for the evolution of Asian H. erectus. Dentine and enamel samples from the coexisting fossil layer yield significantly younger apparent ages, that of the enamel sample being only less than one-fourth of the minimum age of Nanjing Man. This suggests that U uptake history is far more complex than existing models can handle. As a result, great care must be taken in the interpretation of electron spin resonance and U-series dates of fossil teeth.
Resumo:
Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSORmodD, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with (DMSO)-O-18 or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSORmodD form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.
Resumo:
The aim of this study was to determine the pharmacokinetic profile of the normal recommended dose of ceftriaxone in critically ill patients and to establish whether the current daily dosing recommendation maintains plasma concentrations adequate for antibacterial efficacy. Ceftriaxone at a recommended dose of 2 g iv was administered od to 12 critically ill patients with severe sepsis and normal serum creatinine concentrations. Blood samples were taken at predetermined intervals over the first 24 h and on day 3 for measurement of ceftriaxone concentrations. There was wide variability in drug disposition, explained by the presence of variable renal function and identified by the measurement of creatinine clearance. In nine patients with normal renal function, there was a high level of creatinine clearance(mean +/- S.D., 41 +/- 12 mL/min) and volume of distribution (20 +/- 3.3 L), which resulted in an elimination half-life of 6.4 +/- 1.1 h. In comparison with normal subjects, ceftriaxone clearance was increased 100%, volume of distribution increased 90% and the elimination half-life was similar. Three patients had substantially suboptimal plasma ceftriaxone concentrations. We confirm previous findings that ceftriaxone clearance in critically ill patients correlates with renal clearance by glomerular filtration. The elimination half-life is prolonged (21.4 +/- 9.8 h) in critically ill patients with renal failure when compared with previously published data in non-critically ill patients with renal failure. We conclude that in critically ill patients with normal renal function, inadequate plasma concentrations may result following od bolus dosing of ceftriaxone. Drug accumulation may occur in critically ill patients with renal failure.
Resumo:
This study compared the effects of zinc and odorants on the voltage-gated K+ channel of rat olfactory neurons. Zinc reduced current magnitude, depolarized the voltage activation curve and slowed activation kinetics without affecting inactivation or deactivation kinetics. Zinc inhibition was potentiated by the NO compound, S-nitroso-cysteine. The pH- and diethylpyrocarbonate-dependence of zinc inhibition suggested that zinc acted by binding to histidine residues. Cysteine residues were eliminated as contributing to the zinc-binding site. The odorants, acetophenone and amyl acetate, also reduced current magnitude, depolarized the voltage activation curve and selectively slowed activation kinetics. Furthermore, the diethylpyrocarbonate- and pH-dependence of odorant inhibition implied that the odorants also bind to histidine residues. Zinc inhibitory potency was dramatically diminished in the presence of odorants, implying competition for a common binding site. These observations indicate that the odorants and zinc share a common inhibitory binding site on the external surface of the voltage-gated K+ channel.