931 resultados para Topological data analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we examine the problem of compositional data from a different starting point. Chemical compositional data, as used in provenance studies on archaeological materials, will be approached from the measurement theory. The results will show, in a very intuitive way that chemical data can only be treated by using the approach developed for compositional data. It will be shown that compositional data analysis is a particular case in projective geometry, when the projective coordinates are in the positive orthant, and they have the properties of logarithmic interval metrics. Moreover, it will be shown that this approach can be extended to a very large number of applications, including shape analysis. This will be exemplified with a case study in architecture of Early Christian churches dated back to the 5th-7th centuries AD

Relevância:

90.00% 90.00%

Publicador:

Resumo:

notes for class discussion and exercise

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Slides and Handouts for class introducing some of the concepts associated with the analysis of qualitative data

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eye tracking has become a preponderant technique in the evaluation of user interaction and behaviour with study objects in defined contexts. Common eye tracking related data representation techniques offer valuable input regarding user interaction and eye gaze behaviour, namely through fixations and saccades measurement. However, these and other techniques may be insufficient for the representation of acquired data in specific studies, namely because of the complexity of the study object being analysed. This paper intends to contribute with a summary of data representation and information visualization techniques used in data analysis within different contexts (advertising, websites, television news and video games). Additionally, several methodological approaches are presented in this paper, which resulted from several studies developed and under development at CETAC.MEDIA - Communication Sciences and Technologies Research Centre. In the studies described, traditional data representation techniques were insufficient. As a result, new approaches were necessary and therefore, new forms of representing data, based on common techniques were developed with the objective of improving communication and information strategies. In each of these studies, a brief summary of the contribution to their respective area will be presented, as well as the data representation techniques used and some of the acquired results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Virtual globe technology holds many exciting possibilities for environmental science. These easy-to-use, intuitive systems provide means for simultaneously visualizing four-dimensional environmental data from many different sources, enabling the generation of new hypotheses and driving greater understanding of the Earth system. Through the use of simple markup languages, scientists can publish and consume data in interoperable formats without the need for technical assistance. In this paper we give, with examples from our own work, a number of scientific uses for virtual globes, demonstrating their particular advantages. We explain how we have used Web Services to connect virtual globes with diverse data sources and enable more sophisticated usage such as data analysis and collaborative visualization. We also discuss the current limitations of the technology, with particular regard to the visualization of subsurface data and vertical sections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual exploration of scientific data in life science area is a growing research field due to the large amount of available data. The Kohonen’s Self Organizing Map (SOM) is a widely used tool for visualization of multidimensional data. In this paper we present a fast learning algorithm for SOMs that uses a simulated annealing method to adapt the learning parameters. The algorithm has been adopted in a data analysis framework for the generation of similarity maps. Such maps provide an effective tool for the visual exploration of large and multi-dimensional input spaces. The approach has been applied to data generated during the High Throughput Screening of molecular compounds; the generated maps allow a visual exploration of molecules with similar topological properties. The experimental analysis on real world data from the National Cancer Institute shows the speed up of the proposed SOM training process in comparison to a traditional approach. The resulting visual landscape groups molecules with similar chemical properties in densely connected regions.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While over-dispersion in capture–recapture studies is well known to lead to poor estimation of population size, current diagnostic tools to detect the presence of heterogeneity have not been specifically developed for capture–recapture studies. To address this, a simple and efficient method of testing for over-dispersion in zero-truncated count data is developed and evaluated. The proposed method generalizes an over-dispersion test previously suggested for un-truncated count data and may also be used for testing residual over-dispersion in zero-inflation data. Simulations suggest that the asymptotic distribution of the test statistic is standard normal and that this approximation is also reasonable for small sample sizes. The method is also shown to be more efficient than an existing test for over-dispersion adapted for the capture–recapture setting. Studies with zero-truncated and zero-inflated count data are used to illustrate the test procedures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Event-related functional magnetic resonance imaging (efMRI) has emerged as a powerful technique for detecting brains' responses to presented stimuli. A primary goal in efMRI data analysis is to estimate the Hemodynamic Response Function (HRF) and to locate activated regions in human brains when specific tasks are performed. This paper develops new methodologies that are important improvements not only to parametric but also to nonparametric estimation and hypothesis testing of the HRF. First, an effective and computationally fast scheme for estimating the error covariance matrix for efMRI is proposed. Second, methodologies for estimation and hypothesis testing of the HRF are developed. Simulations support the effectiveness of our proposed methods. When applied to an efMRI dataset from an emotional control study, our method reveals more meaningful findings than the popular methods offered by AFNI and FSL. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability to display and inspect powder diffraction data quickly and efficiently is a central part of the data analysis process. Whilst many computer programs are capable of displaying powder data, their focus is typically on advanced operations such as structure solution or Rietveld refinement. This article describes a lightweight software package, Jpowder, whose focus is fast and convenient visualization and comparison of powder data sets in a variety of formats from computers with network access. Jpowder is written in Java and uses its associated Web Start technology to allow ‘single-click deployment’ from a web page, http://www.jpowder.org. Jpowder is open source, free and available for use by anyone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The organization of non-crystalline polymeric materials at a local level, namely on a spatial scale between a few and 100 a, is still unclear in many respects. The determination of the local structure in terms of the configuration and conformation of the polymer chain and of the packing characteristics of the chain in the bulk material represents a challenging problem. Data from wide-angle diffraction experiments are very difficult to interpret due to the very large amount of information that they carry, that is the large number of correlations present in the diffraction patterns.We describe new approaches that permit a detailed analysis of the complex neutron diffraction patterns characterizing polymer melts and glasses. The coupling of different computer modelling strategies with neutron scattering data over a wide Q range allows the extraction of detailed quantitative information on the structural arrangements of the materials of interest. Proceeding from modelling routes as diverse as force field calculations, single-chain modelling and reverse Monte Carlo, we show the successes and pitfalls of each approach in describing model systems, which illustrate the need to attack the data analysis problem simultaneously from several fronts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Microarray based comparative genomic hybridisation (CGH) experiments have been used to study numerous biological problems including understanding genome plasticity in pathogenic bacteria. Typically such experiments produce large data sets that are difficult for biologists to handle. Although there are some programmes available for interpretation of bacterial transcriptomics data and CGH microarray data for looking at genetic stability in oncogenes, there are none specifically to understand the mosaic nature of bacterial genomes. Consequently a bottle neck still persists in accurate processing and mathematical analysis of these data. To address this shortfall we have produced a simple and robust CGH microarray data analysis process that may be automated in the future to understand bacterial genomic diversity. Results: The process involves five steps: cleaning, normalisation, estimating gene presence and absence or divergence, validation, and analysis of data from test against three reference strains simultaneously. Each stage of the process is described and we have compared a number of methods available for characterising bacterial genomic diversity, for calculating the cut-off between gene presence and absence or divergence, and shown that a simple dynamic approach using a kernel density estimator performed better than both established, as well as a more sophisticated mixture modelling technique. We have also shown that current methods commonly used for CGH microarray analysis in tumour and cancer cell lines are not appropriate for analysing our data. Conclusion: After carrying out the analysis and validation for three sequenced Escherichia coli strains, CGH microarray data from 19 E. coli O157 pathogenic test strains were used to demonstrate the benefits of applying this simple and robust process to CGH microarray studies using bacterial genomes.