814 resultados para Titanium dioxide (TiO)
Resumo:
Water wetting is a crucial issue in carbon dioxide (CO.) corrosion of multiphase flow pipelines made from mild steel. This study demonstrates the use of a novel benchtop apparatus, a horizontal rotating cylinder, to study the effect of water wetting on CO2 corrosion of mild steel in two-phase flow. The setup is similar to a standard rotating cylinder except for its horizontal orientation and the presence of two phases-typically water and oil. The apparatus has been tested by using mass-transfer measurements and CO2 corrosion measurements in single-phase water flow. CO2 corrosion measurements were subsequently performed using a water/hexane mixture with water cuts varying between 5% and 50%. While the metal surface was primarily hydrophilic under stagnant. conditions, a variety of dynamic water wetting situations was encountered as the water cut and fluid velocity were altered. Threshold velocities were identified at various water cuts when the surface became oil-wet and corrosion stopped.
Resumo:
A model of iron carbonate (FeCO3) film growth is proposed, which is an extension of the recent mechanistic model of carbon dioxide (CO2) corrosion by Nesic, et al. In the present model, the film growth occurs by precipitation of iron carbonate once saturation is exceeded. The kinetics of precipitation is dependent on temperature and local species concentrations that are calculated by solving the coupled species transport equations. Precipitation tends to build up a layer of FeCO3 on the surface of the steel and reduce the corrosion rate. On the other hand, the corrosion process induces voids under the precipitated film, thus increasing the porosity and leading to a higher corrosion rate. Depending on the environmental parameters such as temperature, pH, CO2 partial pressure, velocity, etc., the balance of the two processes can lead to a variety of outcomes. Very protective films and low corrosion rates are predicted at high pH, temperature, CO2 partial pressure, and Fe2+ ion concentration due to formation of dense protective films as expected. The model has been successfully calibrated against limited experimental data. Parametric testing of the model has been done to gain insight into the effect of various environmental parameters on iron carbonate film formation. The trends shown in the predictions agreed well with the general understanding of the CO2 corrosion process in the presence of iron carbonate films. The present model confirms that the concept of scaling tendency is a good tool for predicting the likelihood of protective iron carbonate film formation.
Resumo:
The solubility of ethyl propionate, ethyl butyrate, and ethyl isovalerate in supercritical carbon dioxide was measured at temperature ranging from 308.15 to 333.15 K and pressure ranging from 85 to 195 bar. At the same temperature, the solubility of these compounds increases with pressure. The crossover pressure region was also observed in this study. The experimental data were correlated by the semi-empirical Chrastil equation and Peng-Robinson equation of state (EOS) using several mixing rules. The Peng-Robinson EOS gives better solubility prediction than the empirical Chrastil equation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A ilustração infantil está na base deste nosso projecto. Sendo esta uma área em crescimento na actualidade, e que muito nos motiva, foi fundamental estudar alguns aspectos sobre a história da ilustração infantil em Portugal e também abordar o processo de concepção, criação e publicação de um álbum infantil ilustrado. No âmbito deste projecto desenvolvemos assim uma parte teórica e também uma parte prática, que consistiu na criação de um livro infantil ilustrado: O Pinguim Pingalim e o Leão Tião, com texto de Lurdes Breda e música de João Conde. O álbum foi concebido tendo por base o estudo das possibilidades da narrativa visual e sua articulação com a narrativa escrita e sonora. O álbum ilustrado, destinado a uma faixa etária dos 6 aos 10 anos, foi apresentado e trabalhado junto das crianças, efectuando-se a análise da recepção da obra junto do público.
Resumo:
The evolution of the topography of titanium surfaces treated with femtosecond laser radiation in stationary conditions as a function of radiation fluence and number of laser pulses is investigated. Depending on the processing parameters, ripples, microcolumns, wavy or smooth surfaces can be obtained. The ripples predominate for fluences near the damage threshold of titanium (0.2+/-0.1) J/cm(2), while microcolumns form during the first 200 pulses for fluences between (0.6+/-0.2) and (1.7+/-0.2) J/cm(2). A wavy topography develops for fluences and number of pulses higher than (1.7+/-0.2) J/cm(2) and 300, respectively. A bimodal surface topography consisting of surface ripples overlapping a microcolumnar topography can be obtained if the surfaces are firstly treated to create microcolumns followed by laser treatment with a lower fluence near the ablation threshold of the material, in order to generate periodic ripple
Resumo:
Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 degrees C. The undoped films were implanted with Au fiuences in the range of 5 x 10(15) Au/cm(2)-1 x 10(17) Au/cm(2) with a energy of 150 keV. At a fluence of 5 x 10(16) Au/cm(2) the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 degrees C, reaching the precipitates dimensions larger than 40 nm at 600 degrees C. Annealing above 700 degrees C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Solubility measurements of quinizarin. (1,4-dihydroxyanthraquinone), disperse red 9 (1-(methylamino) anthraquinone), and disperse blue 14 (1,4-bis(methylamino)anthraquinone) in supercritical carbon dioxide (SC CO2) were carried out in a flow type apparatus, at a temperature range from (333.2 to 393.2) K and at pressures from (12.0 to 40.0) MPa. Mole fraction solubility of the three dyes decreases in the order quinizarin (2.9 x 10(-6) to 2.9.10(-4)), red 9 (1.4 x 10(-6) to 3.2 x 10(-4)), and blue 14 (7.8 x 10(-8) to 2.2 x 10(-5)). Four semiempirical density based models were used to correlatethe solubility of the dyes in the SC CO2. From the correlation results, the total heat of reaction, heat of vaporization plus the heat of solvation of the solute, were calculated and compared with the results presented in the literature. The solubilities of the three dyes were correlated also applying the Soave-Redlich-Kwong cubic equation of state (SRK CEoS) with classical mixing rules, and the physical properties required for the modeling were estimated and reported.
Resumo:
Solubilities of red 153, (3-[[4-[[5,6(or 6,7)-dichloro-2-benzothiazolyl]azo]phenyl]ethylamino]propanenitrile), an azo compound, and disperse blue1 (1,4,5,8-tetraaminoantraquinone) in supercritical carbon dioxide (SC CO(2)) were measured at T = (333.2 to 393.2) K over the pressure range (12.0 to 40.0) MPa by a flow type apparatus. The solubility of red 153 (0.985. 10(-6) to 37.2. 10(-6)) in the overall region of measurements is found to be significantly higher than that of disperse blue 1 (1.12.10(-7) to 4.89.10(-7)). The solubility behavior of disperse red 153 follows the general solubility trend displayed by disperse dyes with a crossover pressure at about 20 MPa. On the other hand, blue 1, which is a disperse anthraquinone dye, exhibits unexpected behavior not recorded previously there is no crossover pressure at the temperature and pressure ranges studied, and the dye's solubility at T = 333.2 K practically does not increase with pressure. To the best of our knowledge, there are no previous measurements of blue 1 solubility in SC CO(2) reported in the literature. The experimental data were correlated by using the Soave Redlich Kwong equation of state (EoS) with the one-fluid van der Waals mixing rule, and an acceptable correlation of the solubility data for both dyes was obtained.
Resumo:
A discussion of the most interesting results obtained in our laboratories, during the supercritical CO(2) extraction of bioactive compounds from microalgae and volatile oils from aromatic plants, was carried out. Concerning the microalgae, the studies on Botryococcus braunii and Chlorella vulgaris were selected. Hydrocarbons from the first microalgae, which are mainly linear alkadienes (C(23)-C(31)) with an odd number of carbon atoms, were selectively extracted at 313 K increasing the pressure up to 30.0 MPa. These hydrocarbons are easily extracted at this pressure, since they are located outside the cellular walls. The extraction of carotenoids, mainly canthaxanthin and astaxanthin, from C. vulgaris is more difficult. The extraction yield of these components at 313 K and 35.0 MPa increased with the degree of crushing of the microalga, since they are not extracellular. On the other hand, for the extraction of volatile oils from aromatic plants, studies on Mentha pulegium and Satureja montana L were chosen. For the first aromatic plant, the composition of the volatile and essential oils was similar, the main components being the pulegone and menthone. However, this volatile oil contained small amounts of waxes, which content decreased with decreasing particle size of the plant matrix. For S. montana L it was also observed that both oils have a similar composition, the main components being carvacrol and thymol. The main difference is the relative amount of thymoquinone, which content can be 15 times higher in volatile oil. This oxygenated monoterpene has important biological activities. Moreover, experimental studies on anticholinesterase activity of supercritical extracts of S. montana were also carried out. The supercritical nonvolatile fraction, which presented the highest content of the protocatechuic, vanilic, chlorogenic and (+)-catechin acids, is the most promising inhibitor of the enzyme butyrylcholinesterase. In contrast, the Soxhlet acetone extract did not affect the activity of this enzyme at the concentrations tested. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
O presente trabalho descreve o estudo da actividad e antimicrobiana de quarto derivados da quinoxalina N,N-dióxido: quinoxalina 1,4-dióxido, 2-metilquinoxalina 1,4- dióxido, 6-cloro-2,3-dimetilquinoxalina 1,4-dióxido e 3-benzoil-2-metilquinoxalina 1,4- dióxido contra as estirpes bacterianas Geobacillus stearothermophilus ATCC 10149, Escherichia coli ATCC 25922, Escherichia coli HB101, Escherichia coli (blaTEM, blaCTX-M) e Salmonella (blaCTX-M), assim como contra a estirpe de levedura Saccharomyces cerevisiae PYCC 4072. A determinação da concentração mínima inibitória (MIC) foi realizada pelo método de diluição. Os valores de MIC’s foram estimados para cada composto e estirpe. Os resultados obtidos sugerem potenciais novas drogas para quimioterapia.
Resumo:
The nitrogen heterocyclic organic compounds 1,4 dioxide pyrazine and quinoxaline derivatives have been widely studied due to their potential use as synthetic drugs. The thermochemical study of three N,N´-dioxides: 2,3,5-trimethylpyrazine-1,4-dioxide, tetramethylpyrazine-1,4-dioxide and 6-chloro-2,3-dimethilquinoxaline 1,4-dioxide has been recently developed in order to establish relationships among the energetical, structural and reactivity properties [4,5]. Several studies have reported their pharmacological activity, particularly as antimicrobial agents [1,2,3]. It has also been established a relation between energetical and structural properties and biological activity, once these compounds present N – oxide bonds, increasing their oxidative capacity. The present work reports the study of antimicrobial activity for those compounds against the bacteria Geobacillus stearothermophylus, Staphylococcus aureus, Streptococcus agalactiae, Escherichia coli and also against the yeasts Saccharomyces cerevisiae PYCC 4072, Candida albicans PYCC3436T, Candida tropicalis PYCC, Issatchenka Orientalis PYCC. The determination of the minimal inhibitory concentration (MIC), points to an antimicrobial activity and the preliminary results indicate that these compounds may be potential candidates as antimicrobial drugs with clinical, agriculture or food industries applications.
Resumo:
A quinoxalina e seus derivativos são uma importante classe de compostos heterocíclicos, onde os elementos N, S e O substituem átomos de carbono no anel. A fórmula molecular da quinoxalina é C8H6N2, formada por dois anéis aromáticos, benzeno e pirazina. É rara em estado natural, mas a sua síntese é de fácil execução. Modificações na estrutura da quinoxalina proporcionam uma grande variedade de compostos e actividades, tais como actividades antimicrobiana, antiparasitária, antidiabética, antiproliferativa, anti-inflamatória, anticancerígena, antiglaucoma, antidepressiva apresentando antagonismo do receptor AMPA. Estes compostos também são importantes no campo industrial devido, por exemplo, ao seu poder na inibição da corrosão do metal. A química computacional, ramo natural da química teórica é um método bem desenvolvido, utilizado para representar estruturas moleculares, simulando o seu comportamento com as equações da física quântica e clássica. Existe no mercado uma grande variedade de ferramentas informaticas utilizadas na química computacional, que permitem o cálculo de energias, geometrias, frequências vibracionais, estados de transição, vias de reação, estados excitados e uma variedade de propriedades baseadas em várias funções de onda não correlacionadas e correlacionadas. Nesta medida, a sua aplicação ao estudo das quinoxalinas é importante para a determinação das suas características químicas, permitindo uma análise mais completa, em menos tempo, e com menos custos.