995 resultados para Tire Shear Force.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to develop an innovative carbon fibre reinforced polymer (CFRP) laminate with a U configuration to address strengthening interventions, where the increment of both flexural and shear capacity of reinforced concrete (RC) elements is required. This strengthening solution combines the near surface mounted (NSM) and embedded through section (ETS) techniques in the same application, since these techniques have already evidenced high performance on flexural and shear strengthening of RC beams using FRP systems, respectively. In fact, the proposed hybrid technique aims to mobilize the advantages provided by these two strengthening techniques by using an innovative CFRP laminate. The strengthening efficacy of this new hybrid NSM/ETS technique was numerically assessed and compared to the corresponding efficiency of NSM and ETS techniques applied separately for the flexural and shear strengthening of RC beams, respectively. The numerical models are described and the main relevant results are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dovetail joints are one of the most cornrnonly used joints during Gothic and Baroque periods. Despite being coristructed in the sarne way during the ages, there is no analyticai solution available to help its analysis and design so required in reconstruction works of existing timber structures. An analytical solution based on the principie of virtual works under different types of loading is presented in this paper as weli as differences in bearing capacity of the joint for chosen types of loading, when different wood species are used. The accuracy of the presented solution is confirrned by data obtained from experimental tests of scaied modeis of a dovetail joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High performance fiber reinforced concrete (HPFRC) is developing rapidly to a modern structural material with unique rheological and mechanical characteristics. Despite applying several methodologies to achieve self15 compacting requirements, some doubts still remain regarding the most convenient strategy for developing a HPFRC. In the present study, an innovative mix design method is proposed for the development of high17 performance concrete reinforced with a relatively high dosage of steel fibers. The material properties of the developed concrete are assessed, and the concrete structural behavior is characterized under compressive, flexural and shear loading. This study better clarifies the significant contribution of fibers for shear resistance of concrete elements. This paper further discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The effectiveness of different ETS strengthening configurations was also investigated. The good bond between the strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, failure modes and slip information of the tensile steel bars for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the forcedeflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Ordenamento e Valorização de Recursos Geológicos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"