927 resultados para Time-series Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tricyclic antidepressants have notable cardiac side effects, and this issue has become important due to the recent reports of increased cardiovascular mortality in patients with depression and anxiety. Several previous studies indicate that serotonin reuptake inhibitors (SRIs) do not appear to have such adverse effects. Apart from the effects of these drugs on routine 12-lead ECG, the effects on beat-to-beat heart rate (HR) and QT interval time series provide more information on the side effects related to cardiac autonomic function. In this study, we evaluated the effects of two antidepressants, nortriptyline (n = 13), a tricyclic, and paroxetine (n = 16), an SRI inhibitor, on HR variability in patients with panic disorder, using a measure of chaos, the largest Lyapunov exponent (LLE) using pre- and posttreatment HR time series. Our results show that nortriptyline is associated with a decrease in LLE of high frequency (HF: 0.15-0.5 Hz) filtered series, which is most likely due to its anticholinergic effect, while paroxetine had no such effect. Paroxetine significantly decreased sympathovagal ratios as measured by a decrease in LLE of LF/HF. These results suggest that paroxetine appears to be safer in regards to cardiovascular effects compared to nortriptyline in this group of patients. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the problem of time series classification. Using piecewise linear interpolation various novel kernels are obtained which can be used with Support vector machines for designing classifiers capable of deciding the class of a given time series. The approach is general and is applicable in many scenarios. We apply the method to the task of Online Tamil handwritten character recognition with promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called `early warning signals', and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation for extracting water-covered regions. Analysis of MODIS satellite images is applied in three stages: before flood, during flood and after flood. Water regions are extracted from the MODIS images using image classification (based on spectral information) and image segmentation (based on spatial information). Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification (SVM and ANN) and region-based image segmentation is an accurate and reliable approach for the extraction of water-covered regions. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series classification deals with the problem of classification of data that is multivariate in nature. This means that one or more of the attributes is in the form of a sequence. The notion of similarity or distance, used in time series data, is significant and affects the accuracy, time, and space complexity of the classification algorithm. There exist numerous similarity measures for time series data, but each of them has its own disadvantages. Instead of relying upon a single similarity measure, our aim is to find the near optimal solution to the classification problem by combining different similarity measures. In this work, we use genetic algorithms to combine the similarity measures so as to get the best performance. The weightage given to different similarity measures evolves over a number of generations so as to get the best combination. We test our approach on a number of benchmark time series datasets and present promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research has been undertaken to ascertain the predictability of non-stationary time series using wavelet and Empirical Mode Decomposition (EMD) based time series models. Methods have been developed in the past to decompose a time series into components. Forecasting of these components combined with random component could yield predictions. Using this ideology, wavelet and EMD analyses have been incorporated separately which decomposes a time series into independent orthogonal components with both time and frequency localizations. The component series are fit with specific auto-regressive models to obtain forecasts which are later combined to obtain the actual predictions. Four non-stationary streamflow sites (USGS data resources) of monthly total volumes and two non-stationary gridded rainfall sites (IMD) of monthly total rainfall are considered for the study. The predictability is checked for six and twelve months ahead forecasts across both the methodologies. Based on performance measures, it is observed that wavelet based method has better prediction capabilities over EMD based method despite some of the limitations of time series methods and the manner in which decomposition takes place. Finally, the study concludes that the wavelet based time series algorithm can be used to model events such as droughts with reasonable accuracy. Also, some modifications that can be made in the model have been discussed that could extend the scope of applicability to other areas in the field of hydrology. (C) 2013 Elesvier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of classification of time series data is an interesting problem in the field of data mining. Even though several algorithms have been proposed for the problem of time series classification we have developed an innovative algorithm which is computationally fast and accurate in several cases when compared with 1NN classifier. In our method we are calculating the fuzzy membership of each test pattern to be classified to each class. We have experimented with 6 benchmark datasets and compared our method with 1NN classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of water and solute transit times in catchments is crucial for predicting the response of hydrosystems to external forcings (climatic or anthropogenic). The hydrogeochemical signatures of tracers (either natural or anthropogenic) in streams have been widely used to estimate transit times in catchments as they integrate the various processes at stake. However, most of these tracers are well suited for catchments with mean transit times lower than about 4-5 years. Since the second half of the 20th century, the intensification of agriculture led to a general increase of the nitrogen load in rivers. As nitrate is mainly transported by groundwater in agricultural catchments, this signal can be used to estimate transit times greater than several years, even if nitrate is not a conservative tracer. Conceptual hydrological models can be used to estimate catchment transit times provided their consistency is demonstrated, based on their ability to simulate the stream chemical signatures at various time scales and catchment internal processes such as N storage in groundwater. The objective of this study was to assess if a conceptual lumped model was able to simulate the observed patterns of nitrogen concentration, at various time scales, from seasonal to pluriannual and thus if it was relevant to estimate the nitrogen transit times in headwater catchments. A conceptual lumped model, representing shallow groundwater flow as two parallel linear stores with double porosity, and riparian processes by a constant nitrogen removal function, was applied on two paired agricultural catchments which belong to the Research Observatory ORE AgrHys. The Global Likelihood Uncertainty Estimation (GLUE) approach was used to estimate parameter values and uncertainties. The model performance was assessed on (i) its ability to simulate the contrasted patterns of stream flow and stream nitrate concentrations at seasonal and inter-annual time scales, (ii) its ability to simulate the patterns observed in groundwater at the same temporal scales, and (iii) the consistency of long-term simulations using the calibrated model and the general pattern of the nitrate concentration increase in the region since the beginning of the intensification of agriculture in the 1960s. The simulated nitrate transit times were found more sensitive to climate variability than to parameter uncertainty, and average values were found to be consistent with results from others studies in the same region involving modeling and groundwater dating. This study shows that a simple model can be used to simulate the main dynamics of nitrogen in an intensively polluted catchment and then be used to estimate the transit times of these pollutants in the system which is crucial to guide mitigation plans design and assessment. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ``energy-like measure'' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate ``high-frequency'' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.