945 resultados para Ti-Mo alloys
Resumo:
We present here magnetization, specific heat, and Raman studies on single-crystalline specimens of the first pyrochlore member Sm2Ti2O7 of the rare-earth titanate series. Its analogous compound Sm2Zr2O7 in the rare-earth zirconate series is also investigated in the polycrystalline form. The Sm spins in Sm2Ti2O7 remain unordered down to at least T=0.5 K. The absence of magnetic ordering is attributed to very small values of exchange (θcw∼−0.26 K) and dipolar interaction (μeff∼0.15 μB) between the Sm3+ spins in this pyrochlore. In contrast, the pyrochlore Sm2Zr2O7 is characterized by a relatively large value of Sm-Sm spin exchange (θcw∼−10 K); however, long-range ordering of the Sm3+ spins is not established at least down to T=0.67 K due to frustration of the Sm3+ spins on the pyrochlore lattice. The ground state of Sm3+ ions in both pyrochlores is a well-isolated Kramers doublet. The higher-lying crystal field excitations are observed in the low-frequency region of the Raman spectra of the two compounds recorded at T=10 K. At higher temperatures, the magnetic susceptibility of Sm2Ti2O7 shows a broad maximum at T=140 K, while that of Sm2Zr2O7 changes monotonically. Whereas Sm2Ti2O7 is a promising candidate for investigating spin fluctuations on a frustrated lattice, as indicated by our data, the properties of Sm2Zr2O7 seem to conform to a conventional scenario where geometrical frustration of the spin excludes their long-range ordering.
Resumo:
Phase relations in the system Ca-Ti-O have been established by equilibration of several samples at 1200 K for prolonged periods and identification of phases in quenched samples by optical and scanning electron microscopy, XRD and EDS. Samples representing 20 compositions in the ternary system were analyzed. There was negligible solid solubility of Ca in the phases along the binary Ti-O, and of Ti in CaO. Four ternary oxides were identified: CaTiO3, Ca4Ti3O10 and Ca3Ti2O7 containing tetravalent titanium, and CaTi2O4 containing trivalent titanium. Tie-lines link calcium titanite (CaTi2O4) with the three calcium titanates (CaTiO3, Ca4Ti3O10 and Ca3Ti2O7), CaO, oxygen excess TiO1+delta and stoichiometric TiO. Tie-lines connect CaTiO3 with TiO2-x, Magneli phases TinO2n-1 (28 >= n >= 4), Ti3O5, Ti2O3 and TiO1+delta. CaO was found to coexist with TiO, and Ti-O solid solutions alpha and beta. The phase diagram is useful for understanding the mechanisms and kinetics of direct calciothermic reduction of TiO2 to metal and electrochemical reduction of TiO2 using graphite anode and molten CaCl2 electrolyte.
Resumo:
A conventional magnesium alloy, AZ91D, and two creep resistant magnesium alloys, developed for powertrain applications, MRI 153M and MRI 230D, are prepared by high pressure die casting. These alloys are tested for their creep behaviour in the continuous manner, as is the Current practice, and in the interrupted manner, which represents the real life Situation more closely. It is observed that the interrupted creep tests give rise to a primary creep appearing at the beginning of each cycle resulting in a higher average strain rate than that encountered in the continuous creep tests. Further, the shorter the cycle time, higher is the average strain rate in the interrupted creep tests. A higher average strain rate will give rise to a higher strain over the same period. This is attributed to the recovery taking place during the cooling and heating between two cycles. The effect of additional precipitation during interrupted creep tests depends on the nature of the precipitates. The additional precipitation of beta phase during the cooling and heating between two cycles increases the steady state strain rate in the AZ91D and MRI 153M alloys. whereas the additional precipitation of C36 phase during the cooling and heating between two cycles decreases the steady state strain rate in the MRI 230D alloy. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Phase-singular solid solutions of La0.6Sr0.4Mn1-yMeyO3 (0 <= y <= 0.3) [Me=Li1+, Mg2+, Al3+, Ti4+, Nb5+, Mo6+ or W6+] [LSMey] perovskite of rhombohedral symmetry (space group: R (3) over barc) have been prepared wherein the valence of the diamagnetic substituent at Mn site ranged from 1 to 6. With increasing y-content in LSMey, the metal-insulator (TM-I) transition in resistivity-temperature rho(T) curves shifted to low temperatures. The magnetization studies M(H) as well as the M(T) indicated two groups for LSMey. (1) Group A with Me=Mg, Al, Ti, or Nb which are paramagnetic insulators (PIs) at room temperature with low values of M (< 0.5 mu(B)/Mn); the magnetic transition [ferromagnetic insulator (FMI)-PI] temperature (T-C) shifts to low temperatures and nearly coincides with that of TM-I and the maximum magnetoresistance (MR) of similar to 50% prevails near T-C (approximate to TM-I). (2) Group-B samples with Me=Li, Mo, or W which are FMIs with M-s=3.3-3.58 mu(B)/Mn and marginal reduction in T-C similar to 350 K as compared to the undoped LSMO (T-C similar to 378 K). The latter samples show large temperature differences Delta T=T-c-TM-I, reaching up to similar to 288 K. The maximum MR (similar to 60%) prevails at low temperatures corresponding to the M-I transition TM-I rather than around T-C. High resolution lattice images as well as microscopy analysis revealed the prevalence of inhomogeneous phase mixtures of randomly distributed charge ordered-insulating (COI) bistripes (similar to 3-5 nm width) within FMI charge-disordered regions, yet maintaining crystallographically single phase with no secondary precipitate formation. The averaged ionic radius < r(B)>, valency, or charge/radius ratio < CRR > cannot be correlated with that of large Delta T; hence cannot be used to parametrize the discrepancy between T-C and TM-I. The M-I transition is controlled by the charge conduction within the electronically heterogeneous mixtures (COI bistripes+FMI charge disordered); large MR at TM-I suggests that the spin-ordered FM-insulating regions assist the charge transport, whereas the T-C is associated with the bulk spin ordered regions corresponding to the FMI phase of higher volume fraction of which anchors the T-C to higher temperatures. The present analysis showed that the double-exchange model alone cannot account for the wide bifurcation of the magnetic and electric transitions, contributions from the charge as well as lattice degrees of freedom to be separated from spin/orbital ordering. The heterogeneous phase mixtures (COI+FMI) cannot be treated as of granular composite behavior. (c) 2008 American Institute of Physics.
Resumo:
The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, fracture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal-reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field.
Resumo:
The interdiffusion coefficient in Ni(Mo) solid solution, impurity diffusion of Mo in Ni, average interdiffusion coefficient of the NiMo-sigma phase and activation energies for diffusion in solid solution and in the sigma phase of the Ni-Mo binary system are evaluated through the diffusion couple approach. These results are utilized to identify the possible diffusion mechanism. Low activation energy in the sigma phase indicates a grain-boundary-controlled diffusion process. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We describe an investigation of (Ba3MMWO9)-M-II-W-IV oxides for M-II = Ca, Zn, and other divalent metals and M-IV = Ti, Zr. In general, a 1:2-ordered 6H (hexagonal, P6(3)/mmc) perovskite structure is stabilized at high temperatures (1300 degrees C) for all of the (Ba3MTiWO9)-Ti-II oxides investigated. An intermediate phase possessing a partially ordered 1:1 double perovskite (3C) structure with the cation distribution, Ba-2(Zn2/3Ti1/3)(W2/3Ti1/3)O-6, is obtained at 1200 degrees C for Ba3ZnTiWO9. Sr substitution for Ba in the latter stabilizes the cubic 3C structure instead of the 6H structure. A metastable Ba3CaZrWO9 that adopts the 3C (cubic, Fm (3) over barm) structure has also been synthesized by a low-temperature metathesis route. Besides yielding several new perovskite oxides that may be useful as dielectric ceramics, the present investigation provides new insights into the complex interplay of crystal chemistry (tolerance factor) and chemical bonding (anion polarization and d(0)-induced distortion of metal-oxygen octahedra) in the stabilization of 6H versus 3C perovskite structures for the (Ba3MMWO9)-M-II-W-IV series.
Resumo:
Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
La0.5Li0.5TiO3 perovskite was synthesized by various wet chemical methods. By adopting low temperature methods of preparation lithium loss from the material is prevented. La0.5Li0.5TiO3 (LLTO) was formed with cubic symmetry at 1473 K. LLTO was formed at relatively lower temperature by using hydrothermal preparation method. PVA gel-decomposition route yield tetragonal LLTO on annealing the dried gel at 1473 K. By using gel-carbonate route LiTi2O4 minor phase was found to remain even after heat-treatment at 1473 K. The hydroxylation of LLTO was done in deionized water as well as in dilute acetic acid medium. By hydroxylation process incorporation of hydroxyls and leaching out of Li+ was observed from the material. The Li+ concentration of these compositions was examined by AAS. The electrical conductivities of these compositions were measured by dc and ac impedance techniques at elevated temperatures. The activation energies of electrical conduction for these compositions were estimated from the experimental results. The measured activation energy of Li+ conduction is 0.34 eV. Unhydroxylated samples exhibit only Li+ conduction, whereas, the hydroxylated LLTO show proton conductivity at 298-550 K in addition to Li+ conductivity. The effect of Zr or Ce substitution in place of Ti were attempted. La0.5Li0.5ZrO3 Perovskite was not formed; instead pyrochlore phase (La2Zr2O7) along with monoclinic ZrO2 phases was observed above 1173 K; below 1173 K cubic ZrO2 is stable. (La0.5Li0.5)(2)CeO4 solid solution was formed in the case of Ce substitution at Ti sublattice on heat-treatment up to 1673 K. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
We describe an investigation of (Ba3MMWO9)-M-II-W-IV oxides for M-II = Ca, Zn, and other divalent metals and M-IV = Ti, Zr. In general, a 1:2-ordered 6H (hexagonal, P6(3)/mmc) perovskite structure is stabilized at high temperatures (1300 degrees C) for all of the (Ba3MTiWO9)-Ti-II oxides investigated. An intermediate phase possessing a partially ordered 1:1 double perovskite (3C) structure with the cation distribution, Ba-2(Zn2/3Ti1/3)(W2/3Ti1/3)O-6, is obtained at 1200 degrees C for Ba3ZnTiWO9. Sr substitution for Ba in the latter stabilizes the cubic 3C structure instead of the 6H structure. A metastable Ba3CaZrWO9 that adopts the 3C (cubic, Fm (3) over barm) structure has also been synthesized by a low-temperature metathesis route. Besides yielding several new perovskite oxides that may be useful as dielectric ceramics, the present investigation provides new insights into the complex interplay of crystal chemistry (tolerance factor) and chemical bonding (anion polarization and d(0)-induced distortion of metal-oxygen octahedra) in the stabilization of 6H versus 3C perovskite structures for the (Ba3MMWO9)-M-II-W-IV series.
Resumo:
The insertion of phenyl isocyanate into titanium isopropoxide leads to the formation of a dimeric complex [Ti(O ' Pr)(2)(mu-O ' Pr){C6H5N(O ' Pr)CO}](2) (1) which has been structurally characterized. Reaction of titanium isopropoxide with two and more than 2 equiv. of phenyl isocyanate is complicated by competitive, reversible insertion between the titanium carbamate and titanium isopropoxide. The ligand formed by insertion of phenyl isocyanate into the titanium carbamate has been structurally characterized in its protonated form C6H5N{C(O ' Pr)O}C(O)N(H)C6H5 (3aH). Insertion into the carbamate is kinetically favored whereas insertion into isopropoxide gives the thermodynamically favored product. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We discover that hexagonal holmium copper titanate (Ho2CuTiO6), has a unique and highly desirable combination of high dielectric constant, low losses, very small temperature coefficient, and low frequency dependence. Our first-principles calculations indicate that these exceptional properties result from a size-difference at the Cu/Ti B-site that suppresses the expected ferroelectric transition, combined with the dominance of intermediate-frequency polar vibrational modes in the dielectric response. Our results suggest that the use of such B-site disorder in alloys of hexagonal transition-metal oxides should generally result in similar robust dielectrics.
Resumo:
The Ramberg-Osgood relation which adequately describes the stress-strain curve of a strain-hardening material is extended to formulate the constitutive laws for creep. The constitutive laws which describe primary creep adequately are extended to secondary creep. The results are verified for the case of R.R. 59 at 200°C, Nimonic 80A and Nimonic 90 alloys at 750°C.