683 resultados para Thrust bearings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il prodotto principale del lavoro è la Carta Geologica alla scala 1:5.000 che ha portato un avanzamento delle conoscenze nella zona in esame. Dal punto di vista stratigrafico il Gruppo dei Calcari Grigi è stato suddiviso nelle formazioni già distinte nei Fogli CARG Tione, Malè, Trento e Asiago: la Formazione di Monte Zugna, Fm. Di Loppio, Fm. Di Rotzo, Fm. Di Grigno. È stato possibile anche rilevare e cartografare l’Oolite di S. Vigilio, anche detta Encrinite di Monte Agaro, con uno spessore di circa 5 m sino alla zona di Sass de Falares, cioè più ad est di quanto noto in letteratura. E’ stato osservato che la Linea di Belluno non è un piano unico, ma comprende altre due faglie: la Linea di Monte Piad che consiste in una faglia inversa che taglia in cerniera l’Anticlinale del Monte Coppolo, e poco a sud la Linea di Sasso Falares che rappresenta la faglia che ha generato la piega per propagazione di faglia del Coppolo, e proseguendo poi verso l’alto ha tagliato tutta la piega emergendo in superficie. In tal modo si forma il duplex di Sasso Falares, arrangiato in una blanda coppia anticinale-sinclinale tipica della geometria di queste strutture, che risulta delimitato a nord dalla linea omonima e a sud dalla L. di Belluno s.s. che si incontrano a quota circa 700 m. Si è potuta anche ricostruire la cinematica del piano principale del thrust di Belluno studiando l’affioramento eccezionale messo a nudo di recente. Gli assi degli sforzi, agenti in compressione, ricostruiti tramite l’analisi meso-strutturale, testimoniano una compressione orientata NNW-SSE, correlabile con l’Evento Valsuganese del Serravalliano-Tortoniano, legato ad un asse compressivo N340 che rappresenta l’evento principale nella regione sudalpina. Anche l’Evento compressivo del Cattiano-Burdigalliano con asse N30 ed una compressione orientata circa E-W correlabile con l’Evento Scledense del Messiniano-Pliocene risultano dall’analisi strutturale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il lavoro si propone di definire l’assetto geologico strutturale dell’area compresa tra la Valle del Torrente Cismon ed il Sass de Falares, a nord di Lamon (BL). Le novità che si sono potute aggiungere alla cartografia esistente, dal punto di vista stratigrafico sono: 1) La suddivisione del gruppo dei Calcari Grigi in quattro formazioni presenti più a occidente, quali la formazione di Monte Zugna, la formazione di Loppio, la formazione di Rotzo e la formazione del Grigno che in queste zone non erano ancora state evidenziate. La presenza di diffusi noduli di selce grigio-giallastra presenti nella parte medio-alta della formazione di Monte Zugna che testimoniano la persistenza di un ambiente subtidale nel Lias al passaggio tra Alto di Trento e Bacino Bellunese. 2) La presenza dell’Encrinite di Monte Agaro (Oolite di S.Vigilio) con uno spessore esiguo di 5 m sul Monte Coppolo ed anche in cresta a Sass de Falares. In ambito tettonico: 1) Si è accertato che l’anticlinale del Monte Coppolo è tagliata dalla faglia inversa del M.Piad con direzione circa E – O e immergente a N con un’inclinazione di circa 70° spezzando la piega quasi in cerniera; la si può riconoscere sul versante S ed E del M. Coppolo dove disloca la Fm. di M. Zugna e la Dolomia Principale. 2) Si è ricostruito l’assetto tettonico del Sass de Falares, che risulta essere una scaglia tettonica (duplex) compresa tra la Linea di Sass de Falares e la Linea di Belluno. 3) L’Anticlinale del M. Coppolo si è generata per propagazione di una faglia che corrisponde alla Linea di Sass de Falares che in seguito ha tagliato l’anticlinale con meccanismi di fault bend folding. Infine per ultima si è formata la Linea di Belluno s.s. a basso angolo con un raccorciamento maggiore di 2 km. Il sovrascorrimento di Belluno pertanto non è una struttura unica ma si sfrangia in 3 strutture tettoniche separate: Linea di M.Piad, Linea di Sass de Falares e Linea di Belluno s.s. 4) In Val della Selva è stato invece fatta la scoperta più importante di questo lavoro, visto che si è potuto osservare direttamente il piano principale della Linea di Belluno affiorante sulla strada forestale che porta verso la località Pugnai e quindi studiarlo e tracciarlo con precisione sulla carta. Esso ha direzione N68 ed un inclinazione di 30° verso NNW; mette a contatto la Fm. di M. Zugna con la Maiolica. Nell’affioramento si è potuta definire l’anatomia della zona di taglio con associazioni di piani R, R’, P e tettoniti S-C. 5) La ricostruzione della sezione geologica ci ha permesso di riconoscere l’organizzazione degli strati coinvolti nella deformazione. Attraverso programmi appositi quali Georient e Software Carey sono stati ricostruiti gli assi di massima compressione tramite l’analisi meso-strutturale: essi testimoniano una compressione orientata NNW-SSE, in accordo con l’Evento Valsuganese del Serravalliano-Tortoniano, legato ad un asse compressivo N340 che rappresenta l’evento principale nella regione sudalpina, ma sono stati riconosciuti anche assi di compressione orientati NE-SW e circa E-W correlabili con l’Evento Insubrico del Miocene inf. e con l’Evento Scledense del Messiniano - Pliocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La zona della piattaforma Adriatica, visibile in sismica a sud della costa croato – montenegrina, è stata oggetto di ricerche petrolifere in passato. Nuovi dati sismici hanno permesso la visualizzazione di alcune caratteristiche che saranno esaminate ed interpretate nel presente lavoro. In particolare ci si concentrerà sulla caratterizzazione e sulla differenziazione dei margini incontrati durante il lavoro di interpretazione. In questa fase, sono emerse delle caratteristiche che hanno permesso una revisione del margine della piattaforma Adriatica e del bacino di Budva noti nella letteratura pregressa. Il problema della differenziazione dei margini della piattaforma è stato affrontato sia in chiave tettonica (influenza della subsidenza, inversione di margini ad opera di un Thrust, tettonica ialina, buckling) che in chiave paleoambientale (influenza di venti dominanti) ricoprendo un arco temporale che spazia tra il Triassico superiore ed il Miocene superiore. Grazie alle interpretazioni effettuate e al confronto con la letteratura, saranno proposte, in una seconda fase, alcune situazioni favorevoli all’accumulo di idrocarburi nella zona di studio. Verrà, infine, affrontato il confronto con casi di letteratura inerenti i margini della vicina piattaforma Apula, considerati come margini coniugati della piattaforma Adriatica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erneute Untersuchungen der mesozoischen Faltenstruktur des Otago Schiefergürtels, Südinsel, Neuseeland, zeigen, dass diese aus zwei aufeinander folgenden, ähnlichen, asymmetrischen, offenen bis mäßig engen Großfaltengenerationen im km- Größenbereich besteht anstatt aus den vorher angenommenen Decken- oder Halbfalten. Hauptproblem der Großfaltenstruktur sind Zonen von durchgreifender Boudinage, die in der Nähe der Großfaltenscharniere entstanden sind. Vorherige Bearbeiter deuteten diese Zonen als 'starke Verformungszonen' oder Überschiebungszonen. Diese Arbeit zeigt, dass in diesen Zonen nur durch die asymmetrische Faltung die unteren liegenden Schenkel der Großfalten boudiniert und somit häufig die ansonsten typischen Faltenstrukturen des liegenden Schenkels einer symmetrischen Faltung überprägt wurden. Ein weiteres Problem dieser mesozoischen Großfaltenstruktur ist die Überprägung einer Faltengeneration auf eine frühere. Weil die Verkürzungsrichtung der überprägenden Faltengeneration nicht subparallel zur älteren Faltenachse ist, sondern einen Winkel von rund 30 Grad einschließt, ist ein Wechsel von orthogonalen zu koaxialen Interferenzmustern der Kleinfalten beobachtbar. Folglich ist die Orientierung der Scheitellinie einer überprägenden und überprägten Kleinfalte nicht unbedingt subparallel zur Orientierung der Faltenachse der Großfalte trotz zylindrischer Faltung. Im letzten Teil dieser Arbeit wird die Überprägung der mesozoischen Großfaltenstruktur durch das känozoisch entstandene, transpressionale Alpine Störungssystem, das einen zweiseitigen Falten- und Überschiebungsgürtel im Otago und im Nordwesten anschließenden Alpinen Schiefergürtel bildet, beschrieben.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We noninvasively detected the characteristics and location of a regional fault in an area of poor bedrock exposure complicated by karst weathering features in the subsurface. Because this regional fault is associated with sinkhole formation, its location is important for hazard avoidance. The bedrock lithologies on either side of the fault trace are similar; hence, we chose an approach that capitalized on the complementary strengths of very low frequency (VLF) electromagnetic, resistivity, and gravity methods. VLF proved most useful as a first-order reconnaissance tool, allowing us to define a narrow target area for further geophysical exploration. Fault-related epikarst was delineated using resistivity. Ultimately, a high-resolution gravity survey and subsequent inverse modeling using the results of the resistivity survey helped to further constrain the location and approximate orientation of the fault. The combined results indicated that the location of the fault trace needed to be adjusted 53 m south of the current published location and was consistent with a north-dipping thrust fault. Additionally, a gravity low south of the fault trace agreed with the location of conductive material from the resistivity and VLF surveys. We interpreted these anomalies to represent enhanced epikarst in the fault footwall. We clearly found that a staged approach involving a progression of methods beginning with a reconnaissance VLF survey, followed by high-resolution gravity and electrical resistivity surveys, can be used to characterize a fault and fault-related karst in an area of poor bedrock surface exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental modal analysis techniques are applied to characterize the planar dynamic behavior of two spur planetary gears. Rotational and translational vibrations of the sun gear, carrier, and planet gears are measured. Experimentally obtained natural frequencies, mode shapes, and dynamic response are compared to the results from lumped-parameter and finite element models. Two qualitatively different classes of mode shapes in distinct frequency ranges are observed in the experiments and confirmed by the lumped-parameter model, which considers the accessory shafts and fixtures in the system to capture all of the natural frequencies and modes. The finite element model estimates the high-frequency modes that have significant tooth mesh deflection without considering the shafts and fixtures. The lumped-parameter and finite element models accurately predict the natural frequencies and modal properties established by experimentation. Rotational, translational, and planet mode types presented in published mathematical studies are confirmed experimentally. The number and types of modes in the low-frequency and high-frequency bands depend on the degrees of freedom in the central members and planet gears, respectively. The accuracy of natural frequency prediction is improved when the planet bearings have differing stiffnesses in the tangential and radial directions, consistent with the bearing load direction. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In writing “Not in the Legends”, one of the images and concepts which constantly returned was that of pilgrimage. I began to write these poems while studying abroad in London, after having passed the previous semester in France and travelling around Europe. There was something in the repetition of sightseeing— walking six miles in Luxembourg to see the grave of General Patton, taking photographs of the apartment where Sylvia Plath ended her life, bowing before the bones of saints, searching through Père Lachaise for the grave of Théodore Gericault— which struck me as numinous and morbid. At the same time, I came to love living abroad and I grew discontent with both remaining and returning. I wanted the opportunity to live everywhere all the time and not have to choose between home and away. Returning from abroad, I turned my attention to the landscape of my native country. I found in the New England pilgrims a narrative of people who had left their home in search of growth and freedom. In these journeys I began to appreciate the significance of place and tried to understand what it meant to move from one place to another, how one chose a home, and why people searched for meaning in specific locations. The processes of moving from student to worker and from childhood to adulthood have weighed on me. I began to see these transitions towards maturity as travels to a different land. Memory and nostalgia are their own types of pilgrimage in their attempts to return to lost places, as is the reading of literature. These pilgrimages, real and metaphorical, form the thematic core of the collection. I read the work of many poets who came before me, returning to the places where the Canon was forged. Those poets have a large presence in the work I produced. I wondered how I, as a young poet, could earn my own place in the tradition and sought models in much the same way a painter studies the brushstrokes of a master. In the process, I have tried to uncover what it means to be a poet. Is it something like being a saint? Is it something like being a colonist? Or is to be the one who goes in search of saints and colonists? In trying to measure my own life and work based on the precedent, I have questioned what role era and generation have on the formation of identity. I focused my reading heavily on the early years of English poetry, trying to find the essence of the time when the language first achieved the transcendence of verse. In following the development of English poetry through Coleridge, John Berryman, and Allison Titus, I have explored the progression of those basic virtues in changing contexts. Those bearings, applied to my modern context, helped to shape the poetry I produced. Many of the poems in “Not in the Legends” are based on my own personal experience. In my recollections I have tried to interrogate nostalgia rather than falling into mere reminiscence. Rather than allowing myself poems of love and longing, I have tried to find the meaning of those emotions. A dominant conflict exists between adventure and comfort which mirrors the central engagement with the nature of being “here” or “there”. It is found in scenes of domesticity and wilderness as I attempt to understand my own simultaneous desire for both. For example, in “Canned Mangoes…” the intrusion of nature, even in a context as innocuous as a poem by Sir Walter Raleigh, unravels ordinary comforts of the domestic sphere. The character of “The Boy” from Samuel Beckett’s Waiting for Godot proved such an interesting subject for me because he is one who can transcend the normal boundaries of time and place. The title suggests connections to both place and time. “Legends” features the dual meaning of both myths and the keys to maps. To propose something “Not in the Legends” is to find something which has no precedent in our histories and our geographies, something beyond our field of knowledge and wholly new. One possible interpretation I devised was that each new generation lives a novel existence, the future being the true locus of that which is beyond our understanding. The title comes from Keats’ “Hyperion, a Fragment”, and details the aftermath of the Titanomachy. The Titans, having fallen to the Olympians, are a representation of the passing of one generation for the next. Their dejection is expressed by Saturn, who laments: Not in my own sad breast, Which is its own great judge and searcher out, Can I find reason why ye should be thus: Not in the legends of the first of days… (129-132) The emotions of the conquered Titans are unique and without antecedent. They are experiencing feelings which surpass all others in history. In this, they are the equivalent of the poet who feels that his or her own sufferings are special. In contrast are Whitman’s lines from “Song of Myself” which serve as an epigraph to this collection. He contends for a sense of continuity across time, a realization that youth, age, pleasure, and suffering have always existed and will always exist. Whitman finds consolation in this unity, accepting that kinship with past generations is more important that his own individuality. These opposing views offer two methods of presenting the self in history. The instinct of poetry suggests election. The poet writes because he feels his experiences are special, or because he believes he can serve as a synecdoche for everyone. I have fought this instinct by trying to contextualize myself in history. These poems serve as an attempt at prosopography with my own narrative a piece of the whole. Because the earth abides forever, our new stories get printed over the locations of the old and every place becomes a palimpsest of lives and acts. In this collection I have tried to untangle some of those layers, especially my own, to better understand the sprawling legend of history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor, and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged-particle transverse momentum, charged-particle multiplicity, and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From June 1997 to June 2003 we performed 194 total hip arthroplasties on 173 patients using alumina ceramic-on-ceramic bearings as part of a prospective United States Food and Drug Administration/Investigational Device Exemption study. The average patient age at surgery was 49.9 years. Minimum followup time was 2 years (mean 4.3 years, range 2-9 years). We evaluated survival rate, implant- and nonimplant-related complications. Clinical outcomes included the Merle d'Aubigné score. We assessed radiographs for signs of osteolysis, component loosening, and implant wear. No patients had osteolysis and there were no hip dislocations. Implant survivorship for all hips with aseptic revision of any component was 96% (CI, 91-100) at 9 year; survivorship for hips without prior surgery was 99.3%, (CI, 98-100). There was a 1.7% incidence of implant-related complications. Our data help confirm two United States FDA/IDE studies on alumina ceramic-on-ceramic total hip arthroplasty that reported low aseptic revision rates and low revision rates for instability. Total hip arthroplasty using alumina ceramic-on-ceramic implants is a safe and reliable procedure in the comparably young and active patient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance (i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-stateengine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel consumptions in certain mission phases. Excel macrocode, Visual Basic for Application, and Excel neuron cells are combined to facilitate Excel software to perform these cycle analyses. These user-friendly programs compute and plot the data sequentially without forcing users to open other types of post-processing programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field separatrix plays a critical role in impeding the coupling between cathode and HET. Suggested changes to HET thruster designs are provided including ways to improve the position of the separatrix to accommodate the cathode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of alternative propellants for Hall thruster operation is an active area of research. Xenon is the current propellant of choice for Hall thrusters, but can be costly in large thrusters and for extended test periods. Condensible propellants may offer an alternative to xenon, as they will not require costly active pumping to remove from a test facility, and may be less expensive to purchase. A method has been developed which uses segmented electrodes in the discharge channel of a Hall thruster to divert discharge current to and from the main anode and thus control the anode temperature. By placing a propellant reservoir in the anode, the evaporation rate, and hence, mass flow of propellant can be controlled. Segmented electrodes for thermal control of a Hall thruster represent a unique strategy of thruster design, and thus the performance of the thruster must be measured to determine the effect the electrodes have on the thruster. Furthermore, the source of any changes in thruster performance due to the adjustment of discharge current between the shims and the main anode must be characterized. A Hall thruster was designed and constructed with segmented electrodes. It was then tested at anode voltages between 300 and 400 V and mass flows between 4 and 6 mg/s, as well as 100%, 75%, 50%, 25%, and <5% of the discharge current on the shim electrodes. The level of current on the shims was adjusted by changing the shim voltage. At each operating point, the thruster performance, plume divergence, ion energy, and multiply charged ion fraction were measured performance exhibited a small change with the level of discharge current on the shim electrodes. Thrust and specific impulse increased by as much as 6% and 7.7%, respectively, as discharge current was shifted from the main anode to the shims at constant anode voltage. Thruster efficiency did not change. Plume divergence was reduced by approximately 4 degrees of half-angle at high levels of current on the shims and at all combinations of mass flow and anode voltage. The fraction of singly charged xenon in the thruster plume varied between approximately 80% and 95% as the anode voltage and mass flow were changed, but did not show a significant change with shim current. Doubly and triply charged xenon made up the remainder of the ions detected. Ion energy exhibited a mixed behavior. The highest voltage present in the thruster largely dictated the most probable energy; either shim or anode voltage, depending on which was higher. The overall change in most probable ion energy was 20-30 eV, the majority of which took place while the shim voltage was higher than the anode voltage. The thrust, specific impulse, plume divergence, and ion energy all indicate that the thruster is capable of a higher performance output at high levels of discharge current on the shims. The lack of a change in efficiency and fraction of multiply charged ions indicate that the thruster can be operated at any level of current on the shims without detrimental effect, and thus a condensible propellant thruster can control the anode temperature without a decrease in efficiency or a change in the multiply charged ion fraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intent of the work presented in this thesis is to show that relativistic perturbations should be considered in the same manner as well known perturbations currently taken into account in planet-satellite systems. It is also the aim of this research to show that relativistic perturbations are comparable to standard perturbations in speciffc force magnitude and effects. This work would have been regarded as little more then a curiosity to most engineers until recent advancements in space propulsion methods { e.g. the creation of a artiffcial neutron stars, light sails, and continuous propulsion techniques. These cutting-edge technologies have the potential to thrust the human race into interstellar, and hopefully intergalactic, travel in the not so distant future. The relativistic perturbations were simulated on two orbit cases: (1) a general orbit and (2) a Molniya type orbit. The simulations were completed using Matlab's ODE45 integration scheme. The methods used to organize, execute, and analyze these simulations are explained in detail. The results of the simulations are presented in graphical and statistical form. The simulation data reveals that the speciffc forces that arise from the relativistic perturbations do manifest as variations in the classical orbital elements. It is also apparent from the simulated data that the speciffc forces do exhibit similar magnitudes and effects that materialize from commonly considered perturbations that are used in trajectory design, optimization, and maintenance. Due to the similarities in behavior of relativistic versus non-relativistic perturbations, a case is made for the development of a fully relativistic formulation for the trajectory design and trajectory optimization problems. This new framework would afford the possibility of illuminating new more optimal solutions to the aforementioned problems that do not arise in current formulations. This type of reformulation has already showed promise when the previously unknown Space Superhighways arose as a optimal solution when classical astrodynamics was reformulated using geometric mechanics.