912 resultados para Thin Melanoma
Resumo:
Amorphous thin films of Fe/Sm, prepared by evaporation methods, have been magnetically characterized and the results were interpreted in terms of the random magnets theory. The samples behave as 2D and 3D random magnets depending on the total thickness of the film. From our data the existence of orientational order, which greatly influences the magnetic behavior of the films, is also clear.
Resumo:
The ac electrical response is studied in thin films composed of well-defined nanometric Co particles embedded in an insulating ZrO2 matrix which tends to coat them, preventing the formation of aggregates. In the dielectric regime, ac transport originates from the competition between interparticle capacitive Cp and tunneling Rt channels, the latter being thermally assisted. This competition yields an absorption phenomenon at a characteristic frequency 1/(RtCp), which is observed in the range 1010 000 Hz. In this way, the effective ac properties mimic the universal response of disordered dielectric materials. Temperature and frequency determine the complexity and nature of the ac electrical paths, which have been successfully modeled by an Rt-Cp network.
Resumo:
Several NdFeB compositionally modulated thin films are studied by using both conversion electron Mossbauer spectra and SQUID (superconducting quantum-interference-device) magnetometry. Both the hyperfine fields and the easy magnetization magnitude are not correlated with the modulation characteristic length (lambda) while the magnetization perpendicular to the thin-film plane decreases as lambda increases. The spectra were recorded at room temperature being the gamma rays perpendicular to the substrate plane. The magnetization measurements were recorded by using a SHE SQUID magnetometer in applied magnetic fields up to 5.5 T and in the temperature range between 1.8 and 30 K.
Resumo:
Conversion electron Mossbauer spectra of composition modulated FeSi thin films have been analysed within the framework of a quasi shape independent model in which the distribution function for the hyperfine fields is assumed to be given by a binomial distribution. Both the hyperfine field and the hyperfine field distribution depend on the modulation characteristic length.
Resumo:
Peptide Ags presented by class I MHC molecules on human melanomas and that are recognized by CD8(+) T cells are the subjects of many studies of antitumor immunity and represent attractive candidates for therapeutic approaches. However, no direct quantitative measurements exist to reveal their expression hierarchy on the cell surface. Using novel recombinant Abs which bind these Ags with a peptide-specific, MHC-restricted manner, we demonstrate a defined pattern of expression hierarchy of peptide-HLA-A2 complexes derived from three major differentiation Ags: gp100, Melan-A/Mart-1, and tyrosinase. Studying melanoma cell lines derived from multiple patients, we reveal a surprisingly high level of presentation of tyrosinase-derived complexes and moderate to very low expression of complexes derived from other Ags. No correlation between Ag presentation and mRNA expression was found; however, protein stability may play a major role. These results provide new insights into the characteristics of Ag presentation and are particularly important when such targets are being considered for immunotherapy. These results may shed new light on relationships between Ag presentation and immune response to cancer Ags.
Resumo:
Many new types of vaccines against infectious or malignant diseases are currently being proposed. Careful characterization of the induced immune response is required in assessing their efficiency. While in most studies human tumor antigen-specific T cells are analyzed after in vitro re-stimulation, we investigated these T cells directly ex vivo using fluorescent tetramers. In peripheral blood lymphocytes from untreated melanoma patients with advanced disease, a fraction of tumor antigen (Melan-A/MART-1)-specific T cells were non-naive, thus revealing tumor-driven immune activation. After immunotherapy with synthetic peptides plus adjuvant, we detected tumor antigen-specific T cells that proliferated and differentiated to memory cells in vivo in some melanoma patients. However, these cells did not present the features of effector cells as found in cytomegalovirus specific T cells analyzed in parallel. Thus, peptide plus adjuvant vaccines can lead to activation and expansion of antigen specific CD8(+) T cells in PBL. Differentiation to protective CD8(+) effector cells may, however, require additional vaccine components that stimulate T cells more efficiently, a major challenge for the development of future immunotherapy.
Resumo:
In thin-layer electrodeposition the dissipated electrical energy leads to a substantial heating of the ion solution. We measured the resulting temperature field by means of an infrared camera. The properties of the temperature field correspond closely with the development of the concentration field. In particular, we find that the thermal gradients at the electrodes act similar to a weak additional driving force to the convection rolls driven by concentration gradients.
Resumo:
Using atomic force microscopy we have studied the nanomechanical response to nanoindentations of surfaces of highly oriented molecular organic thin films (thickness¿1000¿nm). The Young¿s modulus E can be estimated from the elastic deformation using Hertzian mechanics. For the quasi-one-dimensional metal tetrathiafulvalene tetracyanoquinodimethane E~20¿GPa and for the ¿ phase of the p-nitrophenyl nitronyl nitroxide radical E~2GPa. Above a few GPa, the surfaces deform plastically as evidenced by discrete discontinuities in the indentation curves associated to molecular layers being expelled by the penetrating tip.
Resumo:
Electrodeposition experiments conducted in a thin-layer horizontal cell containing a nonbinary aqueous electrolyte prepared with cupric sulfate and sodium sulfate gave rise to fingerlike deposits, a novel and unexpected growth mode in this context. Both the leading instability from which fingers emerge and some distinctive features of their steady evolution are interpreted in terms of a simple model based on the existing theory of fingering in fluids.
Resumo:
Purpose:Chemokine receptors are transmembrane G coupled proteins that might be involved in the directional metastatic migration of tumor cells to specific organs. CXCR4 and CCR7 have been implicated in the selective metastasis of cutaneous melanoma cells to lung and lymph node, respectively. CCR6 is expressed in metastases from colon, ovarian and thyroid carcinomas to the liver where its ligand, CCL20, is constitutively expressed. As uveal melanomas frequently metastasize to the liver, we hypothesized that specific chemokine receptors and their respective ligands might be involved in metastasis of uveal melanoma to the liver. Methods:Tissue microarrays were constructed using 100 non irradiated primary uveal melanomas and 84 liver metastases, as well as 12 non liver metastases, collected from the files of Jules Gonin Eye Hospital and Pathology Institute, University of Lausanne. Immunohistochemistry was performed using anti-human CXCR4, SDF1, CCR7, CCL21 and CCR6 antibodies. Results:CXCR4 expression was detected in 36% of primary uveal melanomas and in 63% of liver metastases but no expression was found in metastases to other organs, except for one pancreatic metastasis. SDF1 expression was detected in 3% of primary uveal melanomas and in 26% of liver metastases, as well as in pancreas, lymph node and breast metastases. CCR6 expression was observed in the majority of primary uveal melanomas and liver metastases (73 and 88%, respectively). In addition, CCR6 was also detected in 9 metastases to other organs (pancreas, thyroid, lymph node, skin and breast). CCR7 and CCL21 were neither detected in primary uveal melanoma, nor in the metastases. Conclusions:Chemokine receptors CCR6 and CXCR4 are expressed in a large number of primary uveal melanomas and in uveal melanoma metastases to the liver. CCR6 is also expressed in a small number of metastases to other organs. These findings form the basis for further studies on the potential involvement of CXCR4 and CCR6 in the selective metastasis of uveal melanoma to the liver.
Resumo:
OBJECTIVE: Prospective analysis of the morbidity and outcome of the sentinel lymph node (SLN) technique in a consecutive series of patients with early-stage melanoma. METHODS: Between 1997 and 1998, 60 patients with stage IB-II malignant melanoma underwent SLN dissection. Preoperative dynamic lymphoscintigraphy with mapping of the lymph vessels and lymph nodes and location of the sentinel node was performed the day before SLN dissection. SLN was identified by use of the blue dye technique. SLN was assessed for histopathological and immunohistochemical examination. Postoperative morbidity and mortality were recorded. Follow-up consisted of repetitive clinical examination with lymph nodes status, laboratory and radiologic findings. RESULTS: Tumor-positive SLN was observed in 18% of the patients and stage II disease was found in 91% of the patients with positive SLN. Breslow thickness was the only significant factor predicting involvement of a SLN (p = 0.02). In 36% of the positive SLN, metastases could be assessed only by immunohistochemical examination. Postoperative complications after SLN dissection were observed in 5% in comparison with 36% after elective lymph node dissection. After a mean follow-up of 32 months, recurrence was observed in 3% with a mean disease-free survival of 8 months. Overall survival was 82% and 90% in patients with positive and negative SLN, respectively. Overall mortality was 15%, due to distant metastases in 78% of the cases. CONCLUSIONS: Staging of early-stage melanoma with the SLN dissection by use of the blue dye technique combined to lymphoscintigraphy and immunohistochemistry is reliable and safe, with less morbidity than elective lymphadenectomy. Long-term follow-up is mandatory to establish the exact reliability of SLN dissection.
Resumo:
The present study discusses the effect of iron doping in TiO2 thin films deposited by rf sputtering. Iron doping induces a structural transformation from anatase to rutile and electrical measurements indicate that iron acts as an acceptor impurity. Thermoelectric power measurement shows a transition between n-type and p-type electrical conduction for an iron concentration around 0.13 at.%. The highest p-type conductivity at room temperature achieved by iron doping was 10(-6) S m(-1).
Resumo:
Thirty-five HLA-A2(+) patients with completely resected stage I-III melanoma were vaccinated multiple times over 6 months with a modified melanoma peptide, gp100(209-2M), emulsified in Montanide adjuvant. Direct ex vivo gp100(209-2M) tetramer analysis of pre- and postvaccine peripheral blood mononuclear cells (PBMCs) demonstrated significant increases in the frequency of tetramer(+) CD8(+) T cells after immunization for 33 of 35 evaluable patients (median, 0.36%; range, 0.05-8.9%). Ex vivo IFN-gamma cytokine flow cytometry analysis of postvaccine PBMCs after brief gp100(209-2M) in vitro activation showed that for all of the patients studied tetramer(+) CD8(+) T cells produced IFN-gamma; however, some patients had significant numbers of tetramer(+) IFN-gamma(-) CD8(+)T cells suggesting functional anergy. Additionally, 8 day gp100(209-2M) in vitro stimulation (IVS) of pre- and postvaccine PBMCs resulted in significant expansion of tetramer(+) CD8(+) T cells from postvaccine cells for 34 patients, and these IVS tetramer(+) CD8(+) T cells were functionally responsive by IFN-gamma cytokine flow cytometry analysis after restimulation with either native or modified gp100 peptide. However, correlated functional and phenotype analysis of IVS-expanded postvaccine CD8(+) T cells demonstrated the proliferation of functionally anergic gp100(209-2M)- tetramer(+) CD8(+) T cells in several patients and also indicated interpatient variability of gp100(209-2M) stimulated T-cell proliferation. Flow cytometry analysis of cryopreserved postvaccine PBMCs from representative patients showed that the majority of tetramer(+) CD8+ T cells (78.1 +/- 4.2%) had either an "effector" (CD45 RA(+)/CCR7(-)) or an "effector-memory" phenotype (CD45RA(-)/CCR7(-)). Notably, analysis of PBMCs collected 12-24 months after vaccine therapy demonstrated the durable presence of gp100(209-2M)-specific memory CD8(+) T cells with high proliferation potential. Overall, this report demonstrates that after vaccination with a MHC class I-restricted melanoma peptide, resected nonmetastatic melanoma patients can mount a significant antigen-specific CD8(+) T-cell immune response with a functionally intact memory component. The data further support the combined use of tetramer binding and functional assays in correlated ex vivo and IVS settings as a standard for immunomonitoring of cancer vaccine patients.