904 resultados para Thermodynamics of polymer Blends
Resumo:
Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadiene prices have fluctuated and significantly increased, leading state highway agencies to search for economically viable alternatives to butadiene based materials. This project reports the recent advances in polymerization techniques that have enabled the synthesis of elastomeric, thermoplastic, block-copolymers (BCPs) comprised of styrene and soybean oil, where the “B” block in SBS polymers is replaced with polymerized triglycerides derived from soybean oil. These new breeds of biopolymers have elastomeric properties comparable to well-established butadiene-based styrenic BCPs. In this report, two types of biopolymer formulations are evaluated for their ability to modify asphalt binder. Laboratory blends of asphalt modified with the biopolymers are tested for their rheological properties and performance grade. Blends of asphalt modified with the biopolymers are compared to blends of asphalt modified with two commonly used commercial polymers. The viscoelastic properties of the blends show that biopolymers improve the performance grade of the asphalt to a similar and even greater extent as the commercial SBS polymers. Results shown in this report indicate there is an excellent potential for the future of these biopolymers as economically and environmentally favorable alternatives to their petrochemically-derived analogs.
Resumo:
By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.
Resumo:
Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.
Resumo:
Erilaisia epäpuhtauksia kulkeutuu paperinvalmistusprosessiin ja monenlaisia saostumia muodostuu paperinvalmistuksen prosesseissa. Epäpuhtaudet voivat aiheuttaa prosessiongelmia sekä alentaa tuotteen laatua. Epäpuhtauksien alkuperän ja koostumuksen selvittäminen edellyttää usein erilaisten analyysimenetelmien käyttöä. Epäpuhtauksien luokittelu on useasti välttämätöntä ennen tarkempaa kemiallista analyysia. Paperinvalmistuksen epäpuhtauksien kvalitatiiviseen luokitteluun on yleisimmin käytetty mikroskopian, IR-spektroskopian ja analyyttisen pyrolyysin menetelmiä. Raman spektroskopia on harvinaisempi menetelmä paperiteollisuuden tutkimuksessa. Raman instrumenttien kehittyminen on ollut voimakasta viimeisen vuosikymmenen aikana. Raman spektroskopia onkin osoittanut mandollisuutensa polymeerien, lääketeollisuuden ja polttoaineteollisuuden tutkimuksissa. Tässä työssä tutkittiin erään elintarvikepakkauskartongin epäpuhtauksia Raman spektroskoopilla. Työn tavoitteena oli selvittää Raman analyysin käyttökelpoisuutta kartongin epäpuhtauksien online-luokittelussa. Tutkimukset suoritettiin Spectracoden RP-1 Raman instrumentilla. Tutkimukset osoittivat, että näytteen fluoresenssi ja näytteen hajoaminen asettavat rajoituksia epäpuhtauksien Raman analyysille. Epäpuhtauksien online-tunnistaminen toimii käytettäessä suuria lasertehoja ja säteilytysaikoja. Näytteiden laserherkkyys ja fluoresenssi rajoittavat kuitenkin suurien laiteparametrien käyttöä. Laiteparametrien pienentäminen johti mittauksien signaali-kohina suhteen alenemiseen, mikä puolestaan aiheutti online-tunnistuksen toimimattomuuden.
Resumo:
The objective of industrial crystallization is to obtain a crystalline product which has the desired crystal size distribution, mean crystal size, crystal shape, purity, polymorphic and pseudopolymorphic form. Effective control of the product quality requires an understanding of the thermodynamics of the crystallizing system and the effects of operation parameters on the crystalline product properties. Therefore, obtaining reliable in-line information about crystal properties and supersaturation, which is the driving force of crystallization, would be very advantageous. Advanced techniques, such asRaman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and in-line imaging techniques, offer great potential for obtaining reliable information during crystallization, and thus giving a better understanding of the fundamental mechanisms (nucleation and crystal growth) involved. In the present work, the relative stability of anhydrate and dihydrate carbamazepine in mixed solvents containing water and ethanol were investigated. The kinetics of the solvent mediated phase transformation of the anhydrate to hydrate in the mixed solvents was studied using an in-line Raman immersion probe. The effects of the operation parameters in terms of solvent composition, temperature and the use of certain additives on the phase transformation kineticswere explored. Comparison of the off-line measured solute concentration and the solid-phase composition measured by in-line Raman spectroscopy allowedthe identification of the fundamental processes during the phase transformation. The effects of thermodynamic and kinetic factors on the anhydrate/hydrate phase of carbamazepine crystals during cooling crystallization were also investigated. The effect of certain additives on the batch cooling crystallization of potassium dihydrogen phosphate (KDP) wasinvestigated. The crystal growth rate of a certain crystal face was determined from images taken with an in-line video microscope. An in-line image processing method was developed to characterize the size and shape of thecrystals. An ATR FTIR and a laser reflection particle size analyzer were used to study the effects of cooling modes and seeding parameters onthe final crystal size distribution of an organic compound C15. Based on the obtained results, an operation condition was proposed which gives improved product property in terms of increased mean crystal size and narrowersize distribution.
Resumo:
This paper deals with a phenomenologically motivated magneto-viscoelastic coupled finite strain framework for simulating the curing process of polymers under the application of a coupled magneto-mechanical road. Magneto-sensitive polymers are prepared by mixing micron-sized ferromagnetic particles in uncured polymers. Application of a magnetic field during the curing process causes the particles to align and form chain-like structures lending an overall anisotropy to the material. The polymer curing is a viscoelastic complex process where a transformation from fluid. to solid occurs in the course of time. During curing, volume shrinkage also occurs due to the packing of polymer chains by chemical reactions. Such reactions impart a continuous change of magneto-mechanical properties that can be modelled by an appropriate constitutive relation where the temporal evolution of material parameters is considered. To model the shrinkage during curing, a magnetic-induction-dependent approach is proposed which is based on a multiplicative decomposition of the deformation gradient into a mechanical and a magnetic-induction-dependent volume shrinkage part. The proposed model obeys the relevant laws of thermodynamics. Numerical examples, based on a generalised Mooney-Rivlin energy function, are presented to demonstrate the model capacity in the case of a magneto-viscoelastically coupled load.
Resumo:
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Resumo:
Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac) of polymer-surfactant complexes and the critical micellar concentration (cmc) of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS) mixtures, solutions containing poly(ethylene oxide)-SDS, poly(vinylpyrrolidone)-SDS and poly(acrylic acid)-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.
Resumo:
Biodegradable polymer blends were obtained using collagen and chitosan. Membranes of collagen and chitosan in different proportions (3:1, 1:1 and 1:3) were prepared by mixing their acetate solutions (pH 3.5) at room temperature. The blends were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier Transform infrared (FTIR) spectroscopy, specific viscosity, water absorption and stress-strain assays. The results showed that chitosan did not interfere in the structural arrangement of the collagen triple helix and the properties of the blends can be controlled by varing the proportion of the collagen and the chitosan.
Resumo:
The synthesis of layered double hydroxides (LDHs) by hydrothermal-LDH reconstruction and coprecipitation methods is reviewed using a thermodynamic approach. A mixture model was used for the estimation of the thermodynamics of formation of LDHs. The synthesis and solubility of LDHs are discussed in terms of standard molar Gibbs free energy change of reaction. Data for numerous divalent and trivalent metals as well as for some monovalent and tetravalent metals that may be part of the LDH structure have been compiled. Good agreement is found between theoretical and experimental data. Diagrams and tables for the prediction of possible new LDH materials are provided.
Resumo:
Dynamic mechanical analysis (DMA) is widely used in materials characterization. In this work, we briefly introduce the main concepts related to this technique such as, linear and non-linear viscoelasticity, relaxation time, response of material when it is submitted to a sinusoidal or other periodic stress. Moreover, the main applications of this technique in polymers and polymer blends are also presented. The discussion includes: phase behavior, crystallization; spectrum of relaxation as a function of frequency or temperature; correlation between the material damping and its acoustic and mechanical properties.
Resumo:
As it is known, a huge part of all commercially available membranes are prepared by immersion precipitation. This way is the primary way to get flat membranes. The advantages of immersion precipitation are: wide field of the polymers, which can be used (polymer must be soluble in a solvent or a solvent mixture) and ease of performing. The literature part of this work deals with phase inversion membrane preparation methods and casting parameters affecting membrane performance. Also some membrane types and materials are discussed. In the experimental part of this work 73 membrane samples were made with different casting parameters (polymer concentration in the casting solution and precipitation time) and tested for the retention and permeability. The results of these experiments are collected and combined into the figures and tables which are presented in this thesis. This work showed and confirmed connection between membrane performance and casting parameters (concentration of polymer in the casting solution and precipitation time).
Resumo:
Poly(ethylene-co-methyl acrylate) (EMA) and poly (caprolactone) triol (PCL-T) blends, a biodegradable aliphatic polyester with low molecular weight and moderate water solubility containing diltiazem hydrochloride (DZ) were studied in terms of the thermal and morphological properties, and drug release mechanism. An increase in the PCL-T content in the EMA/PCL-T/DZ films decreased the degree of DZ crystallinity. Drug release from these films is temperature-dependent, and it is possible to modify the drug release rate by adjusting the EMA/PCL-T composition of the blends. The mechanism of drug release is governed by PCL-T melting and PCL-T leaching from EMA matrix.
Resumo:
Poly(D,L-lactide), PDLLA, is a polymer with potential applications in medical, environmental, and pharmaceutical areas. Despite its versatility, the hydrophobicity limits its applications. To overcome this problem, one strategy is the preparation of blends with hydrophilic polymers such as poly(vinylpyrrolidone), PVP. In this study, we report the preparation and characterization of blends based on PDLLA and PVP and the biodegradation studies by the Sturm test. It was observed that the components of the blends PDLLA/PVP are thermodynamically immiscible, however the biodegradation is faster than that of pure PDLLA.
Resumo:
Current industrial atomic layer deposition (ALD) processes are almost wholly confined to glass or silicon substrates. For many industrial applications, deposition on polymer substrates will be necessary. Current deposition processes are also typically carried out at temperatures which are too high for polymers. If deposition temperatures in ALD can be reduced to the level applicable for polymers, it will open new interesting areas and applications for polymeric materials. The properties of polymers can be improved for example by coatings with functional and protective properties. Although the ALD has shown its capability to operate at low temperatures suitable for polymer substrates, there are other issues related to process efficiency and characteristics of different polymers where new knowledge will assist in developing industrially conceivable ALD processes. Lower deposition temperature in ALD generally means longer process times to facilitate the self limiting film growth mode characteristic to ALD. To improve process efficiency more reactive precursors are introduced into the process. For example in ALD oxide processes these can be more reactive oxidizers, such as ozone and oxygen radicals, to substitute the more conventionally used water. Although replacing water in the low temperature ALD with ozone or plasma generated oxygen radicals will enable the process times to be shortened, they may have unwanted effects both on the film growth and structure, and in some cases can form detrimental process conditions for the polymer substrate. Plasma assistance is a very promising approach to improve the process efficiency. The actual design and placement of the plasma source will have an effect on film growth characteristics and film structure that may retard the process efficiency development. Due to the fact that the lifetime of the radicals is limited, it requires the placement of the plasma source near to the film growth region. Conversely this subjects the substrate to exposure byother plasma species and electromagnetic radiation which sets requirements for plasma conditions optimization. In this thesis ALD has been used to modify, activate and functionalize the polymer surfaces for further improvement of polymer performance subject to application. The issues in ALD on polymers, both in thermal and plasma-assisted ALD will be further discussed.