1000 resultados para Ternary Linear Codes
Resumo:
This report describes a new approach to the problem of scheduling highway construction type projects. The technique can accurately model linear activities and identify the controlling activity path on a linear schedule. Current scheduling practices are unable to accomplish these two tasks with any accuracy for linear activities, leaving planners and manager suspicious of the information they provide. Basic linear scheduling is not a new technique, and many attempts have been made to apply it to various types of work in the past. However, the technique has never been widely used because of the lack of an analytical approach to activity relationships and development of an analytical approach to determining controlling activities. The Linear Scheduling Model (LSM) developed in this report, completes the linear scheduling technique by adding to linear scheduling all of the analytical capabilities, including computer applications, present in CPM scheduling today. The LSM has tremendous potential, and will likely have a significant impact on the way linear construction is scheduled in the future.
Resumo:
PURPOSE: The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. METHODS: Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. RESULTS: The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. CONCLUSION: A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309-1314, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
This manual is a summary of the findings of a comprehensive study. Its purpose is to provide engineers with the information they need to make educated decisions on the use of ternary mixtures for constructing concrete structures. It discusses the effects of ternary mixtures on fresh and hardened mixture properties and on concrete sustainability; factors that need to be considered for both structural and mixture design; quality control issues; and three example mixtures from constructed projects
Resumo:
Constituant l'un des premiers « genres » de l'histoire du cinéma (dont Burch et Gaudreault ont montré le rôle fondateur dans la standardisation des procédures de montage institutionnalisées), les films mettant en scène la Vie et la Passion du Christ fixent leurs normes en s'appropriant des codes iconographiques préétablis. Dans cet article, Valentine Robert s'attache à déployer le « palimpseste » de ces Passions des premiers temps, à démêler les « séries culturelles » impliquées, à dégager les phénomènes de reprises d'une bande à l'autre, et à replacer certains de ces jeux référentiels dans leur visée de légitimation - ou doit-on dire « canonisation » ? - du médium cinématographique.
Resumo:
The choice network revenue management (RM) model incorporates customer purchase behavioras customers purchasing products with certain probabilities that are a function of the offeredassortment of products, and is the appropriate model for airline and hotel network revenuemanagement, dynamic sales of bundles, and dynamic assortment optimization. The underlyingstochastic dynamic program is intractable and even its certainty-equivalence approximation, inthe form of a linear program called Choice Deterministic Linear Program (CDLP) is difficultto solve in most cases. The separation problem for CDLP is NP-complete for MNL with justtwo segments when their consideration sets overlap; the affine approximation of the dynamicprogram is NP-complete for even a single-segment MNL. This is in contrast to the independentclass(perfect-segmentation) case where even the piecewise-linear approximation has been shownto be tractable. In this paper we investigate the piecewise-linear approximation for network RMunder a general discrete-choice model of demand. We show that the gap between the CDLP andthe piecewise-linear bounds is within a factor of at most 2. We then show that the piecewiselinearapproximation is polynomially-time solvable for a fixed consideration set size, bringing itinto the realm of tractability for small consideration sets; small consideration sets are a reasonablemodeling tradeoff in many practical applications. Our solution relies on showing that forany discrete-choice model the separation problem for the linear program of the piecewise-linearapproximation can be solved exactly by a Lagrangian relaxation. We give modeling extensionsand show by numerical experiments the improvements from using piecewise-linear approximationfunctions.
Resumo:
Polynomial constraint solving plays a prominent role in several areas of hardware and software analysis and verification, e.g., termination proving, program invariant generation and hybrid system verification, to name a few. In this paper we propose a new method for solving non-linear constraints based on encoding the problem into an SMT problem considering only linear arithmetic. Unlike other existing methods, our method focuses on proving satisfiability of the constraints rather than on proving unsatisfiability, which is more relevant in several applications as we illustrate with several examples. Nevertheless, we also present new techniques based on the analysis of unsatisfiable cores that allow one to efficiently prove unsatisfiability too for a broad class of problems. The power of our approach is demonstrated by means of extensive experiments comparing our prototype with state-of-the-art tools on benchmarks taken both from the academic and the industrial world.
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
This paper deals with non-linear transformations for improving the performance of an entropy-based voice activity detector (VAD). The idea to use a non-linear transformation has already been applied in the field of speech linear prediction, or linear predictive coding (LPC), based on source separation techniques, where a score function is added to classical equations in order to take into account the true distribution of the signal. We explore the possibility of estimating the entropy of frames after calculating its score function, instead of using original frames. We observe that if the signal is clean, the estimated entropy is essentially the same; if the signal is noisy, however, the frames transformed using the score function may give entropy that is different in voiced frames as compared to nonvoiced ones. Experimental evidence is given to show that this fact enables voice activity detection under high noise, where the simple entropy method fails.
Resumo:
This special issue aims to cover some problems related to non-linear and nonconventional speech processing. The origin of this volume is in the ISCA Tutorial and Research Workshop on Non-Linear Speech Processing, NOLISP’09, held at the Universitat de Vic (Catalonia, Spain) on June 25–27, 2009. The series of NOLISP workshops started in 2003 has become a biannual event whose aim is to discuss alternative techniques for speech processing that, in a sense, do not fit into mainstream approaches. A selected choice of papers based on the presentations delivered at NOLISP’09 has given rise to this issue of Cognitive Computation.
Resumo:
It is well known the relationship between source separation and blind deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal independence between samples can be used to retrieve the original signal, in the same manner as spatial independence is used for source separation. In this paper we propose the use of a Genetic Algorithm (GA) to blindly invert linear channels. The use of GA is justified in the case of small number of samples, where other gradient-like methods fails because of poor estimation of statistics.