939 resultados para Tensile strengh
Resumo:
The effect of tensile prestrain on fatigue crack propagation behaviour of commercial mild steel with significant amount of stringer inclusions has been studied. In prestrained materials the usual stable stage II crack growth region is preceded by a phase wherein a retardation in crack growth rate occurs. No such behaviour is observed in annealed material. The amount of retardation is found to increase with increase in prestrain. A mechanism for the observed retardation in crack growth rate is also presented.
Resumo:
In the present investigation, a very good combination of strength and ductility, 630MPa 0.2% proof stress and 14.8% elongation to fracture in tensile test, has been obtained for the 7075 Al alloy after optimizing the processing parameters for spray forming, hot extruding the spray deposit, and peak aging the samples taken from the extruded rod. The spray deposits contained some porosity but it was almost eliminated on hot extrusion. Electron probe microanalysis revealed that even though spray forming was carried out in an open atmosphere, it did not affect the oxygen content and its distribution in the material on spray forming, because the atomizing argon gas provided a protective cover to molten droplets and prevented their oxidation. The chemical composition of the spray-formed material was found to be almost the same as the raw material, and the major alloying elements were found to be uniformly distributed in the extruded rod.
Resumo:
Rubberwood flour and cellulose have been plasticized by cyanoethylation and then blended with low-density polyethylene (LDPE). A small quantity of epoxy functionalized polyethylene i.e., polyethylene-co-glycidyl methacrylate (PEGMA) has been added to further enhance the mechanical properties. The mechanical properties were measured according to the standard ASTM methods. SEM analysis was performed for both fractured and unfractured blend specimens. The mechanical properties were improved by the addition of PEGMA compatibilizer. LDPE blends with cyanoethylated wood flour (CYWF) showed higher tensile strength and modulus than cyanoethylated cellulose CYC-LDPE blends. However CYC-LDPE blends exhibited higher relative elongation at break values as compared with the former. The TGA analysis showed lowering of thermal stability as the filler content is increased and degradation temperature of LDPE is shifted slightly to lower temperature. DSC analysis showed loss of crystallinity for the LDPE phase as the filler content is increased for both types of blends. Dielectric properties of the blends were similar to LDPE, but were lowered on adding PEGMA. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Polymeric admixtures to concrete ingredients modify the properties of the processed concrete. Ductility is one such property modification. This investigation deals with the development of a method of incorporating natural rubber latex into concrete ingredients with only marginal effects on the compressive strength of base plain concrete. This retention of the strength has been effected by reducing the water/cement ratio with the aid of a superplasticizer. The quantity of natural rubber latex is expressed as the dry rubber content by percentage of volume of concrete. The compressive and tensile strengths, as well as post peak ductile behaviour have been the basis for comparison with those of unmodified concrete.
Resumo:
Several methods are available for predicting flexural strength of steel fiber concrete composites. In these methods, direct tensile strength, split cylinder strength, and cube strength are the basic engineering parameters that must be determined to predict the flexural strength of such composites. Various simplified forms of stress distribution are used in each method to formulate the prediction equations for flexural strength. In this paper, existing methods are reviewed and compared, and a modified empirical approach is developed to predict the flexural strength of fiber concrete composites. The direct tensile strength of the composite is used as the basic parameter in this approach. Stress distribution is established from the findings of flexural tests conducted as part of this investigation on fiber concrete prisms. A comparative study of the test values of an earlier investigation on fiber concrete slabs and the computed values from existing methods, including the one proposed, is presented.
Resumo:
Hypo-eutectic Ti-6.5 wt % Si alloy modified by separate additions of misch metal and low surface tension elements (Na, Sr, Se and Bi) has been examined by microscopic study and thermal analysis. Addition of third element led to modification of microstructure with apparently no significant enhancement of tensile ductility, with the exception of bismuth. Bismuth enhanced the ductility of the alloy by a factor of two and elastic-plastic fracture toughness to 9 MPa m–1/2 from a value of almost zero. The improved ductility of bismuth modified alloy is attributed to the reduced interconnectivity of the eutectic suicide, absence of significant suicide precipitation in the eutectic region and increase in the volume fraction of uniformly distributed dendrites. These changes are accompanied by a decrease in the temperature of eutectic solidification.
Resumo:
Mechanical joints in composites can be tailored to achieve improved performance and better life by appropriately selecting the laminate parameters. In order to gain the best advantage of this possibility of tailoring the laminate, it is necessary to understand the influence of laminate parameters on the behaviour of joints in composites. Most of the earlier studies in this direction were based on simplified assumptions regarding load transfer at the pin-plate interface and such studies were only carried out on orthotropic and quasi-isotropic laminates. In the present study, a more rigorous analysis is carried out to study pin joints in laminates with anisotropic properties. Two types of laminates with (0/ + ?4/90)s and (0/ ± ?2/90)s layups made out of graphite epoxy T300/5208 material system are considered. The analysis mainly concentrates on clearance fit in which the pin is of smaller diameter compared to the hole. The main aspect of the analysis of pin joints is the changing contact between the pin and the plate with increasing load levels. The analysis is carried out by an iterative finite element technique and a computationally efficient routine is developed for this purpose. Numerical studies indicate that the location and magnitude of the peak stresses along the hole boundary are functions of fibre angle and the overall anisotropic properties. It is also shown that the conventional assumption of cosine distribution for the contact pressure between pin and the plate in the analysis lead to underestimation of bearing failure load and overestimation of shear and tensile failure loads in typical (0/905)s cross-ply laminates.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Emulsiokalvolla tarkoitetaan kalvoa, joka on valmistettu haihduttamalla ylimääräinen vesi pois emulsiosta. Polysakkaridipohjainen emulsiokalvo koostuu kalvonmuodostuspolysakkaridista, rasvasta, emulgointiaineesta ja pehmittimestä. Kirjallisuusosassa selvitettiin, mitä raaka-aineita polysakkaridipohjaisissa emulsiokalvoissa käytetään ja mitkä tekijät vaikuttavat emulsiokalvojen vesihöyrynläpäisevyyteen ja mekaanisiin ominaisuuksiin. Tutkimuksen kokeellisen osan tavoitteena oli selvittää, miten konjac-glukomannaani (KGM) ja kuusen galaktoglukomannaani (GGM) soveltuvat emulsiokalvon raaka-aineiksi. Lisäksi selvitettiin, miten rasvan tyyppi ja rasvapitoisuus vaikuttavat GGM-KGM-pohjaisten emulsiokalvojen mekaanisiin ominaisuuksiin ja vesihöyrynläpäisevyyteen. Mehiläisvahasta, mäntyöljystä ja rypsiöljystä valmistettiin emulsiokalvot, joissa oli 30 %:n (paino-% GGM:sta) rasvapitoisuudet. Lisäksi mehiläisvahasta valmistettiin emulsiokalvot, joissa oli 10 ja 50 % mehiläisvahaa. Emulsiokalvoja verrattiin vertailukalvoon, jossa ei ollut rasvaa. Kalvoissa käytetty KGM:n ja GGM:n suhde oli 1:1. Kalvoista mitattiin vesihöyrynläpäisevyys ja -läpäisynopeus, vetolujuus, Youngin moduuli ja murtovenymä. Näiden lisäksi kalvojen poikkileikkaus kuvattiin pyyhkäisyelektronimikroskoopilla. GGM ja KGM soveltuvat emulsiokalvon raaka-aineiksi. Huoneenlämpötilassa kuivatuista kalvoista saatiin tasaisemman näköisiä kuin lämpökaapissa kuivatuista. Pyyhkäisyelektronimikroskooppikuvissa vahapisarat olivat öljypisaroita pienempiä, mikä mahdollisesti vaikutti siihen, että vahapisarat pysyivät paremmin kiinnittyneenä kalvomatriisissa. Öljypisaroiden koko oli kalvoissa noin 10 ?m ja vahapisaroiden 2–6 ?m. Vesihöyrynläpäisynopeus oli pienin 50 %:n mehiläisvahakalvolla (p < 0,05). Vesihöyrynläpäisevyys laski lineaarisesti mehiläisvahapitoisuuden suurentuessa. Öljykalvot ja 10 %:n mehiläisvahakalvo eivät eronneet tilastollisesti merkitsevästi vesihöyrynläpäisevyyden suhteen vertailukalvosta. Pienin vetolujuus ja Youngin moduuli oli 50 %:n mehiläisvahakalvolla. Vertailukalvo oli kestävin ja jäykin. Murtovenymän suhteen kalvot eivät eronneet toisistaan tilastollisesti merkitsevästi. Tutkimuksessa onnistuttiin valmistamaan GGM-KGM-pohjaisia emulsiokalvoja, jotka pidättivät vesihöyryä vertailukalvoa paremmin ja silti säilyttivät mekaaniset ominaisuutensa kohtuullisen hyvin.
Resumo:
Attempts were made to produce directionally solidified, specifically grain aligned Al-6 wt pct Ni eutectic alloy using a laboratory scale ESR unit. For this purpose sand cast alloy electrodes were electroslag remelted under different mold conditions. The grain structure of the ingots obtained from these meltings showed that insulated silica molds gave the best vertical alignment of grains along the length of the ingot. The NiAl3 fibers within the grains tended to fan out and there was only a preferred alignment of fibers along the growth direction under the conditions of our experiments. The ESR parameters most suitable for vertical alignment of eutectic grains have been identified. In some electroslag remelting trials ingots were grown on a seed ingot. This resulted in a fewer vertical grains compared to the case when no seed ingot was used. The sand cast specimen of the eutectic exhibited a maximum tensile strength of around 88.2 MN/m2 (9.0 kg/mm2) whereas conventional ESR using water cooled mold gave strength value of 98.0 MN/m2 (10 kg/mm2). The directionally solidified ESR material showed longitudinal tensile strength as high as 213.7 MN/m2 (21.8 kg/mm2) which could be further increased to 220.6 MN/m2 (22.5 kg/mm2) by using the seed ingot. The average growth rate was varied between 5 to 25 mm/min during electroslag remelting in this study. The flow stresses, tangent modulus and ultimate tensile strength of directionally solidified eutectic increased with increasing growth rates.
Resumo:
Cast aluminium alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40µm – 120µm) the tensile and compression strengths of aluminium alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work [2] shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/mm2 and compression strength of 28 kg/mm2 performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminium-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.
Resumo:
An investigation of the initiation and growth of erosion and of the effect of velocity and pressure on erosion in a rotating disk is presented. Also, the role of an intervening noncavitating period on erosion is studied. The results indicate that at high intensities the peak rate of erosion decreases with increases in pressure. The erosion rate/time curves obtained for metallic materials are explained by the eroded particle distribution and the cavity size. The average size of the eroded particles decreased when pressure and tensile strength of the material were increased. The erosion rate peaked after an intervening noncavitating period. The use of the rate of erosion, defined as an average over the entire test duration, in the equation governing the theory of erosion resulted in reasonably good correlations. The correlations reveal that it is possible to predict the length, width, and area of a cavity when the cavitation parameter σ is known. The normalized width of a cavity may be estimated if its normalized length is known.
Resumo:
Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).
Resumo:
Lactose is probably the most used tablet excipient in the field of pharmacy. Although lactose is thoroughly characterized and available in many different forms there is a need to find a replacer for lactose as a filler/binder in tablet formulations because it has some downsides. Melibiose is a relatively unknown disaccharide that has not been thoroughly characterized and not previously used as an excipient in tablets. Structurally melibiose is close to lactose as it is also formed from the same two monosaccharides, glucose and galactose. Aim of this research is to characterize and to study physicochemical properties of melibiose. Also the potential of melibiose to be used as pharmaceutical tablet excipient, even as a substitute for lactose is evaluated. Current knowledge about fundamentals of tableting and methods for determinating of deformation behavior and tabletability are reviewed. In this research Raman spectroscopy, X-ray powder diffraction (XRPD), near-infrared spectroscopy (NIR) and Fourier-transform infrared spectroscopy (FT-IR) were used to study differences between two melibiose batches purchased from two suppliers. In NIR and FT-IR measurements no difference between materials could be observed. XPRD and Raman however found differences between the two melibiose batches. Also the effects of moisture content and heating to material properties were studied and moisture content of materials seems to cause some differences. Thermal analytical methods, differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to study thermal behaviour of melibiose and difference between materials was found. Other melibiose batch contains residual water which evaporates at higher temperatures causing the differences in thermal behaviour. Scanning electron microscopy images were used to evaluate particle size, particle shape and morphology. Bulk, tapped and true densities and flow properties of melibiose was measured. Particle size of the melibiose batches are quite different resulting causing differences in the flowability. Instrumented tableting machine and compression simulator were used to evaluate tableting properties of melbiose compared to α-lactose monohydrate. Heckel analysis and strain-rate sensitivity index were used to determine deformation mechanism of melibiose monohydrate in relation to α–lactose monohydrate during compaction. Melibiose seems to have similar deformation behaviour than α-lactose monohydrate. Melibiose is most likely fragmenting material. Melibiose has better compactibility than α – lactose monohydrate as it produces tablets with higher tensile strength with similar compression pressures. More compression studies are however needed to confirm these results because limitations of this study.
Resumo:
Kocks' formalism for analysing steady state deformation data for the case where Cottrell-Stokes law is valid is extended to incorporate possible back stresses from solution and/or precipitation hardening, and dependence of pre-exponential factor on the applied stress. A simple graphical procedure for exploiting these equations is demonstrated by analyzing tensile steady state data for a type 316 austentic stainless steel for the temperature range 1023 to 1223 K. In this instance, the computed back stress values turned out to be negative, a physically meaningless result. This shows that for SS 316, deformation in this temperature regime can not be interpreted in terms of a mechanism that obeys Cottrell-Stokes law.