443 resultados para Tailoring.
Resumo:
The effect of liquid medium and its pressure on the photoluminescence of ZnO nanoparticles prepared via laser ablation of Zn targets in various water-ethanol mixtures is studied. As the ethanol content increases, the photoluminescence of the product changes, while metallic zinc is observed to emerge in nanomaterials prepared in ethanol-rich environments. The applied pressure had a less profound effect, mainly affecting materials produced in water or water-ethanol, and much less those generated in pressurized ethanol. Tuning the reactivity of the liquid and pressurizing it during laser ablation is demonstrated to be promising for tailoring the emission properties of the product.
Resumo:
The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society.
Resumo:
CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.
Resumo:
Investigating the experience of violence against women and exploring women's coping strategies is a crucial component of re-tailoring the provision of services for victims/survivors. This article explores violence against women in the context of culture, theory of fear of violence and literature on spaces perceived to be 'safe' or 'dangerous' by women victims/survivors of violence in Ethiopia. To collect the relevant data, we conducted 14 semi-structured interviews with Ethiopian women who are victims/survivors of violence and three interviews with gender experts in Ethiopia. Our group of women suffer in 'silence' and confide only in friends and relatives. They did not resort to institutional support due to lack of awareness and general societal disapproval of such measures. This contrasts with claims by experts that the needs of these women are addressed using an institutional approach. Culture, migration status and lack of negotiating power in places of work are key factors when considering violence. The majority of the respondents in this study occupy both public and private spaces such as bars and homes and have experienced violence in those spaces. The social relations and subsequent offences they endured do not make spaces such as these safe. Education of both sexes, creation of awareness, sustainable resource allocation to support victims/survivors, ratification of the Maputo protocol and effective law enforcement institutions are some of the practical strategies we propose to mitigate the incidence of violence in Ethiopia. © 2010 Taylor & Francis.
Resumo:
Unique electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) have made them one of the most promising candidates for next-generation nanoelectronics. Efficient utilization of the exceptional properties of SWNTs requires controlling their growth direction (e.g., vertical, horizontal) and morphologies (e.g., straight, junction, coiled). ^ In this dissertation, the catalytic effect on the branching of SWNTs, Y-shaped SWNTs (Y-SWNTs), was investigated. The formation of Y-shaped branches was found to be dependent on the composition of the catalysts. Easier carbide formers have a strong tendency to attach to the sidewall of SWNTs and thus enhance the degree of branching. Y-SWNTs based field-effect transistors (FETs) were fabricated and modulated by the metallic branch of the Y-SWNTs, exhibiting ambipolar characteristics at room temperature. A subthreshold swing of 700 mV/decade and an on/off ratio of 105 with a low off-state current of 10-13 A were obtained. The transport phenomena associated with Y- and cross-junction configurations reveals that the conduction mechanism in the SWNT junctions is governed by thermionic emission at T > 100 K and by tunneling at T < 100 K. ^ Furthermore, horizontally aligned SWNTs were synthesized by the controlled modification of external fields and forces. High performance carbon nanotube FETs and logic circuit were demonstrated utilizing the aligned SWNTs. It is found that the hysteresis in CNTFETs can be eliminated by removing absorbed water molecules on the CNT/SiO2 interface by vacuum annealing, hydrophobic surface treatment, and surface passivation. SWNT “serpentines” were synthesized by utilization of the interaction between drag force from gas flow and Van der Waals force with substrates. The curvature of bent SWNTs could be tailored by adjusting the gas flow rate, and changing the gas flow direction with respect to the step-edges on a single-crystal quartz substrate. Resistivity of bent SWNTs was observed to increase with curvature, which can be attributed to local deformations and possible chirality shift at curved part. ^ Our results show the successful synthesis of SWNTs having controllable morphologies and directionality. The capability of tailoring the electrical properties of SWNTs makes it possible to build an all-nanotube device by integrating SWNTs, having different functionalities, into complex circuits. ^
Resumo:
In their discussion - Participative Budgeting and Participant Motivation: A Review of the Literature - by Frederick J. Demicco, Assistant Professor, School of Hotel, Restaurant and Institutional Management, The Pennsylvania State University and Steven J. Dempsey, Fulton F. Galer, Martin Baker, Graduate Assistants, College of Business at Virginia Polytechnic Institute and State University, the authors initially observe: “In recent years behavioral literature has stressed the importance of participation In goal-setting by those most directly affected by those goals. The common postulate is that greater participation by employees in the various management functions, especially the planning function, will lead to improved motivation, performance, coordination, and functional behavior. The authors analyze this postulate as it relates to the budgeting process and discuss whether or not participative budgeting has a significant positive impact on the motivations of budget participants.” In defining the concept of budgeting, the authors offer: “Budgeting is usually viewed as encompassing the preparation and adoption of a detailed financial operating plan…” In furthering that statement they also furnish that budgeting’s focus is to influence, in a positive way, how managers plan and coordinate the activities of a property in a way that will enhance their own performance. In essence, framing an organization within its described boundaries, and realizing its established goals. The authors will have you know, to control budget is to control operations. What kind of parallels can be drawn between the technical methods and procedures of budgeting, and managerial behavior? “In an effort to answer this question, Ronen and Livingstone have suggested that a fourth objective of budgeting exists, that of motivation,” say the authors with attribution. “The managerial function of motivation is manipulative in nature.” Demicco, Dempsey, Galer, and Baker attempt to quantify motivation as a psychological premise using the expectancy theory, which encompasses empirical support, intuitive appeal, and ease of application to the budgetary process. They also present you with House's Path-Goal model; essentially a mathematics type formula designed to gauge motivation. You really need to see this. The views of Argyris are also explored in particular detail. Although, the Argyris study was primarily aimed at manufacturing firms, and the effects on line-supervisors of the manufacturing budgets which were used to control and evaluate their performance, its application is relevant to the hospitality industry. As the title suggests, other notables in the field of behavioral motivation theory, and participation are also referenced. “Behavioral theory has been moving away from models of purported general applicability toward contingency models that are suited for particular situations,” say the authors in closing. “It is conceivable that some time in the future, contingency models will make possible the tailoring of budget strategies to individual budget holder personalities.”
Resumo:
As researchers and practitioners move towards a vision of software systems that configure, optimize, protect, and heal themselves, they must also consider the implications of such self-management activities on software reliability. Autonomic computing (AC) describes a new generation of software systems that are characterized by dynamically adaptive self-management features. During dynamic adaptation, autonomic systems modify their own structure and/or behavior in response to environmental changes. Adaptation can result in new system configurations and capabilities, which need to be validated at runtime to prevent costly system failures. However, although the pioneers of AC recognize that validating autonomic systems is critical to the success of the paradigm, the architectural blueprint for AC does not provide a workflow or supporting design models for runtime testing. ^ This dissertation presents a novel approach for seamlessly integrating runtime testing into autonomic software. The approach introduces an implicit self-test feature into autonomic software by tailoring the existing self-management infrastructure to runtime testing. Autonomic self-testing facilitates activities such as test execution, code coverage analysis, timed test performance, and post-test evaluation. In addition, the approach is supported by automated testing tools, and a detailed design methodology. A case study that incorporates self-testing into three autonomic applications is also presented. The findings of the study reveal that autonomic self-testing provides a flexible approach for building safe, reliable autonomic software, while limiting the development and performance overhead through software reuse. ^
Resumo:
Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs.
Resumo:
Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.
Resumo:
In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.
Resumo:
Chronic Obstructive Pulmonary Disease (COPD) phenotypes have become increasingly recognized as important for grouping patients with similar presentation and/or behavior, within the heterogeneity of the disease. The primary aim of identifying phenotypes is to provide patients with the best health care possible, tailoring the therapeutic approach to each patient. However, the identification of specific phenotypes has been hindered by several factors such as which specific attributes are relevant, which discriminant features should be used for assigning patients to specific phenotypes, and how relevant are they to the therapeutic approach, prognostic and clinical outcome. Moreover, the definition of phenotype is still not consensual. Comorbidities, risk factors, modifiable risk factors and disease severity, although not phenotypes, have impact across all COPD phenotypes. Although there are some identified phenotypes that are fairly consensual, many others have been proposed, but currently lack validation. The on-going debate about which instruments and tests should be used in the identification and definition of phenotypes has contributed to this uncertainty. In this paper, the authors review present knowledge regarding COPD phenotyping, discuss the role of phenotypes and comorbidities on the severity of COPD, propose new phenotypes and suggest a phenotype-based pharmacological therapeutic approach. The authors conclude that a patient-tailored treatment approach, which takes into account each patient's specific attributes and specificities, should be pursued.
Resumo:
Au cours des années une variété des compositions de verre chalcogénure a été étudiée en tant qu’une matrice hôte pour les ions Terres Rares (TR). Pourtant, l’obtention d’une matrice de verre avec une haute solubilité des ions TR et la fabrication d’une fibre chalcogénure dopée au TR avec une bonne qualité optique reste toujours un grand défi. La présente thèse de doctorat se concentre sur l’étude de nouveaux systèmes vitreux comme des matrices hôtes pour le dopage des ions TR, ce qui a permis d’obtenir des fibres optiques dopées au TR qui sont transparents dans l’IR proche et moyenne. Les systèmes vitreux étudiés ont été basés sur le verre de sulfure d’arsenic (As2S3) co-dopé aux ions de Tm3+ et aux différents modificateurs du verre. Premièrement, l’addition de Gallium (Ga), comme un co-dopant, a été examinée et son influence sur les propriétés d’émission des ions de Tm a été explorée. Avec l’incorporation de Ga, la matrice d’As2S3 dopée au Tm a montré trois bandes d’émission à 1.2 μm (1H5→3H6), 1.4 μm (3H4→3F4) et 1.8 μm (3F4→3H6), sous l’excitation des longueurs d’onde de 698 nm et 800 nm. Les concentrations de Tm et de Ga ont été optimisées afin d’obtenir le meilleur rendement possible de photoluminescence. À partir de la composition optimale, la fibre Ga-As-S dopée au Tm3+ a été étirée et ses propriétés de luminescence ont été étudiées. Un mécanisme de formation structurale a été proposé pour ce système vitreux par la caractérisation structurale des verres Ga-As-S dopés au Tm3+, en utilisant la spectroscopie Raman et l’analyse de spectrométrie d’absorption des rayons X (EXAFS) à seuil K d’As, seuil K de Ga et seuil L3 de Tm et il a été corrélé avec les caractéristiques de luminescence de Tm. Dans la deuxième partie, la modification des verres As2S3 dopés au Tm3+, avec l’incorporation d’halogénures (Iode (I2)), a été étudiée en tant qu’une méthode pour l’adaptation des paramètres du procédé de purification afin d’obtenir une matrice de verre de haute pureté par distillation chimique. Les trois bandes d’émission susmentionnées ont été aussi bien observées pour ce système sous l’excitation à 800 nm. Les propriétés optiques, thermiques et structurelles de ces systèmes vitreux ont été caractérisées expérimentalement en fonction de la concentration d’I2 et de Tm dans le verre, où l’attention a été concentrée sur deux aspects principaux: l’influence de la concentration d’I2 sur l’intensité d’émission de Tm et les mécanismes responsables pour l’augmentation de la solubilité des ions de Tm dans la matrice d’As2S3 avec l’addition I2.
Resumo:
BACKGROUND: Improving the quality of health care services requires tailoring facilities to fulfil patients' needs. Satisfying patients' healthcare needs, listening to patients' opinions and building a closer provider-user partnership are central to the NHS. Few published studies have discussed cardiovascular patients' health needs, but they are not comprehensive and fail to explore the contribution of outcome to needs assessment. METHOD: A comprehensive self-administered health needs assessment (HNA) questionnaire was developed for concomitant use with generic (Short Form-12 and EuroQOL) and specific (Seattle Angina Questionnaire) health-related quality of life (HRQL) instruments on 242 patients admitted to the Acute Cardiac Unit, Nottingham. RESULTS: 38% reported difficulty accessing health facilities, 56% due to transport and 32% required a travelling companion. Mean HRQOL scores were lower in those living alone (P < 0.05) or who reported unsatisfactory accommodation. Dissatisfaction with transport affected patients' ease of access to healthcare facilities (P < 0.001). Younger patients (<65 y) were more likely to be socially isolated (P = 0.01). Women and patients with chronic disease were more likely to be concerned about housework (P < 0.05). Over 65 s (p < 0.05) of higher social classes (p < 0.01) and greater physical needs (p < 0.001) had more social needs, correlating moderately (0.32 < r < 0.63) with all HRQL domains except SAQ-AS. Several HRQL components were highly correlated with the HNA physical score (p < 0.001). CONCLUSIONS: Patients wanted more social (suitable accommodation, companionship, social visits) and physical (help aids, access to healthcare services, house work) support. The construct validity and intra-class reliability of the HNA tool were confirmed. Our results indicate a gap between patients' health needs and available services, highlighting potential areas for improvement in the quality of services
Resumo:
Poly(lactide-co-glycolide), or PLGA, microspheres offer a widely-studied biodegradable option for controlled release of therapeutics. An array of fabrication methodologies have been developed to produce these microspheres with the capacity to encapsulate therapeutics of various types; and produce microspheres of a wide range of sizes for different methods of delivery. The encapsulation, stability, and release profiles of therapeutic release based on physical and thermodynamic properties has also been studied and modeled to an extent. Much research has been devoted to tailoring formulations for improved therapeutic encapsulation and stability as well as selective release profiles. Despite the breadth of available research on PLGA microspheres, further analysis of fundamental principles regarding the microsphere degradation, formation, and therapeutic encapsulation is necessary. This work aims to examine additional fundamental principles related to PLGA microsphere formation and degradation from solvent-evaporation of preformed polymer. In particular, mapping the development of the acidic microenvironment inside the microsphere during degradation and erosion is discussed. Also, the effect of macromolecule size and conformation is examined with respect to microsphere diameter and PLGA molecular weight. Lastly, the effects of mechanical shearing and protein exposure to aqueous media during microsphere formation are examined. In an effort to better understand the acidic microenvironment development across the microsphere diameter, pH sensitive dye conjugated to protein that undergoes conformational change at different acidic pH values was encapsulated in PLGA microspheres of diameters ranging from 40 µm to 80 µm, and used in conjunction with fluorescence resonance energy transfer to measure the radial pH change in the microspheres. Qualitative analysis of confocal micrographs was used to correlate fluorescence intensity with pH value, and obtain the radial pH across the center of the microsphere. Therapeutic encapsulation and release from polymeric microspheres is governed by an interconnected variety of factors, including the therapeutic itself. The globular protein bovine serum albumin, and the elongated and significantly smaller enzyme, lysozyme, were encapsulated in PLGA microspheres ranging from 40 µm to 80 µm in diameter. The initial surface morphology upon microsphere formation, release profiles, and microsphere erosion characteristics were explored in an effort to better understand the effect of protein size, conformation, and known PLGA interaction on the formation and degradation of PLGA microspheres and macromolecule release, with respect to PLGA molecular weight and microsphere diameter. In addition to PLGA behavior and macromolecule behavior, the effect of mechanical stresses during fabrication was examined. Two similar solvent extraction techniques were compared for the fabrication of albumin loaded microspheres. In particular, the homogeneity of the microspheres as well as capacity to retain encapsulated albumin were compared. This preliminary study paves the way for a more rigorous treatment of the effect of mechanical forces present in popular microsphere fabrication. Several factors affecting protein release from PLGA microspheres are examined herein. The technique explored for spatial resolution of the pH inside the microsphere proved mildly effective in producing a reliable method of mapping microsphere pH changes. However, notable trends with respect to microsphere size, PLGA molecular weight, and microsphere porosity were observed. Proposed methods of improving spatial resolution of the acidic microenvironment are also provided. With respect to microsphere formation, studies showed that albumin and lysozyme had little effect on the internal homogeneity of the microsphere. Rather, ionic interactions with PLGA played a more significant role in the encapsulation and release of each macromolecule. Studies also showed that higher instances of mechanical stress led to less homogeneous microspheres with lower protein encapsulation. This suggests that perhaps instead of or in addition to modifying the microsphere formation formulation, the fabrication technique itself should be more closely considered in achieving homogeneous microspheres with desired loading.
Resumo:
This exploratory case study examines the role of culture in Chinese-English conference interpreting. Given that there has been a lack of empirical research in understanding the role of culture in conference interpreting through the lens of intercultural communication frameworks, we know relatively little about conference interpreters’ experiences with intercultural communication challenges. This project helps address this research gap by investigating the types of intercultural communication challenges that Chinese-English conference interpreters experience and their strategies in managing those challenges. This study hears the voices of both professionals and postgraduate interpreting students. A total number of 27 participants were recruited for this research. Twenty professional conference interpreter were interviewed and seven interpreting students were organized for a focus group discussion. Grounded theory was used to analyze the participants’ observations and strategies in managing intercultural communication challenges when doing Chinese-English conference interpreting. The data analysis process led to the emergence of two procedural guidelines and one process – Interpreters’ Intercultural Mediation Process. The two procedural guidelines offer guidance for the interpreters to provide the most appropriate and effective service: meet with the clients beforehand and be prepared to offer intercultural insights when consulted. Interpreters are found to follow the Interpreters’ Intercultural Mediation Process to decide when and how to mediate intercultural communication challenges at work. This Process includes four criteria, seven intercultural challenges, and seven coping strategies. This study offers theoretical and applied contributions to our understanding of the role of culture in interpreting. By jointly applying frameworks from intercultural communication and interpreting studies to examine the conference interpreting process, this case study makes great efforts to connect the field of intercultural communication with the field of interpreting studies. This study identifies the types of intercultural differences that would lead to challenges in Chinese-English conference interpreting. It also contributes to the call for a cultural turn in interpreting studies. By learning the two procedural guidelines, conference interpreters can be better prepared for their work. By following the Interpreters’ Intercultural Mediation Process, conference interpreters can better anticipate and manage the intercultural challenges at work. This study also offers guidance on tailoring intercultural communication courses for postgraduate interpreting training programs.