976 resultados para T-Lymphocytes, Cytotoxic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemokine receptor CCR7 is critical for the recirculation of naive T cells. It is required for T cell entry into secondary lymphoid organs (SLO) and for T cell motility and retention within these organs. How CCR7 activity is regulated during these processes in vivo is poorly understood. Here we show strong modulation of CCR7 surface expression and occupancy by the two CCR7 ligands, both in vitro and in vivo. In contrast to blood, T cells in SLO had most surface CCR7 occupied with CCL19, presumably leading to continuous signaling and cell motility. Both ligands triggered CCR7 internalization in vivo as shown in Ccl19(-/-) and plt/plt mice. Importantly, CCR7 occupancy and down-regulation led to strongly impaired chemotactic responses, an effect reversible by CCR7 resensitization. Therefore, during their recirculation, T cells cycle between states of free CCR7 with high ligand sensitivity in blood and occupied CCR7 associated with continual signaling and reduced ligand sensitivity within SLO. We propose that these two states of CCR7 are important to allow the various functions CCR7 plays in T cell recirculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite advances in surgery, radio- and chemotherapy, therapeutic approaches for patients with head and neck squamous carcinoma (HNSCC) need to be improved. Immunotherapies eliciting tumor specific immune responses might constitute novel treatment options. We therefore investigated the expression and immunogenicity of two tumor-associated antigens (TAA) the receptor for hyaluronic acid mediated motility (RHAMM) and carboanhydrase IX (G250/CAIX) in HNSCC patients. Twenty-two HNSCC samples were examined for the expression of RHAMM and G250 by Western blotting and immunohistochemistry, 14/22 samples were tested for HLA-A2 expression by flow cytometry. For 8/22 samples single tumor-cell suspensions were generated, and mixed lymphocyte peptide cultures (MLPC) were performed to evaluate the frequencies of cytotoxic T cells specifically recognizing RHAMM and G250 using Tetramer staining/multi-color flow cytometry and enzyme linked immunosorbent spot (ELISPOT) assays. RHAMM and G250 were expressed in 73 and 80% of the HNSCC samples at the protein level. A co-expression of both TAAs could be detected in 60% of the patients. In 4/8 HLA-A2+ patients, 0.06-0.13% of CD8+ effector T cells recognized Tetramers for RHAMM or G250 and secreted IFNgamma and granzyme B in ELISPOT assays. RHAMM and G250 are expressed at high frequency and high protein level in HNSCCs and are recognized by cytotoxic CD8+ effector T cells. Therefore both TAAs constitute interesting targets for T cell based immunotherapies for HNSCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-cell responses are regulated by activating and inhibiting signals. CD28 and its homologue, cytotoxic T-lymphocyte antigen 4 (CTLA-4), are the primary regulatory molecules that enhance or inhibit T-cell activation, respectively. Recently it has been shown that inhibitory natural killer (NK) cell receptors (NKRs) are expressed on subsets of T cells. It has been proposed that these receptors may also play an important role in regulating T-cell responses. However, the extent to which the NKRs modulate peripheral T-cell homeostasis and activation in vivo remains unclear. In this report we show that NK cell inhibitory receptor Ly49A engagement on T cells dramatically limits T-cell activation and the resultant lymphoproliferative disorder that occurs in CTLA-4-deficient mice. Prevention of activation and expansion of the potentially autoreactive CTLA-4(-/-) T cells by the Ly49A-mediated inhibitory signal demonstrates that NKR expression can play an important regulatory role in T-cell homeostasis in vivo. These results demonstrate the importance of inhibitory signals in T-cell homeostasis and suggest the common biochemical basis of inhibitory signaling pathways in T lymphocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence-labeled soluble major histocompatibility complex class I-peptide "tetramers" constitute a powerful tool to detect and isolate antigen-specific CD8(+) T cells by flow cytometry. Conventional "tetramers" are prepared by refolding of heavy and light chains with a specific peptide, enzymatic biotinylation at an added C-terminal biotinylation sequence, and "tetramerization" by reaction with phycoerythrin- or allophycocyanin-labeled avidin derivatives. We show here that such preparations are heterogeneous and describe a new procedure that allows the preparation of homogeneous tetra- or octameric major histocompatibility complex-peptide complexes. These compounds were tested on T1 cytotoxic T lymphocytes (CTLs), which recognize the Plasmodium berghei circumsporzoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid on Lys(259) in the context of H-2K(d). We report that mutation of the CD8 binding site of K(d) greatly impairs the binding of tetrameric but not octameric or multimeric K(d)-PbCS(ABA) complexes to CTLs. This mutation abolishes the ability of the octamer to elicit significant phosphorylation of CD3, intracellular calcium mobilization, and CTL degranulation. Remarkably, however, this octamer efficiently activates CTLs for Fas (CD95)-dependent apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4; CD152) is of pivotal importance for self-tolerance, with deficiency or unfavorable polymorphisms leading to autoimmune disease. Tolerance to self-antigens is achieved through thymic deletion of highly autoreactive conventional T (Tconv) cells and generation of FoxP3(+) regulatory T (Treg) cells. The main costimulatory molecule, CD28, augments the negative selection of Tconv cells and promotes the generation of FoxP3(+) Treg cells. The role of its antagonistic homolog CTLA-4, however, remains a topic of debate. To address this topic, we investigated the thymic development of T cells in the presence and absence of CTLA-4 in a T-cell receptor (TCR) transgenic mouse model specific for the myelin basic protein peptide Ac1-9. We reveal that CTLA-4 is expressed in the corticomedullary region of the thymus. Its absence alters the response of CD4(+)CD8(-) thymocytes to self-antigen recognition, which affects the quantity of the Treg cells generated and broadens the repertoire of peripheral Tconv cells. T-cell repertoire alteration after deletion of CTLA-4 results from changes in TCR Vα and Jα segment selection as well as CDR3α composition in Tconv and Treg cells. CTLA-4, therefore, regulates the early development of self-reactive T cells in the thymus and plays a key role in central tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In T cells PKCθ mediates the activation of critical signals downstream of TCR/CD28 stimulation. We investigated the molecular mechanisms by which PKCθ regulates NFκB transactivation by examining PKCθ/β single and double knockout mice and observed a redundant involvement of PKCθ and PKCβ in this signaling pathway. Mechanistically, we define a PKCθ-CYLD protein complex and an interaction between the positive PKCθ/β and the negative CYLD signaling pathways that both converge at the level of TAK1/IKK/I-κBα/NFκB and NFAT transactivation. In Jurkat leukemic T cells, CYLD is endoproteolytically processed in the initial minutes of stimulation by the paracaspase MALT1 in a PKC-dependent fashion, which is required for robust IL-2 transcription. However, in primary T cells, CYLD processing occurs with different kinetics and an altered dependence on PKC. The formation of a direct PKCθ/CYLD complex appears to regulate the short-term spatial distribution of CYLD, subsequently affecting NFκB and NFAT repressional activity of CYLD prior to its MALT1-dependent inactivation. Taken together, our study establishes CYLD as a new and critical PKCθ interactor in T cells and reveals that antagonistic PKCθ/β-CYLD crosstalk is crucial for the adjustment of immune thresholds in primary mouse CD3(+) T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cervical cancer, the second leading cause of cancer mortality in women worldwide, results from infection with a subset of human papillomaviruses (HPV), HPV-16 being the most prevalent type. The available prophylactic vaccines are an effective strategy to prevent this cancer in the long term. However, they only target 70-80% of all cervical cancers and cannot control existing HPV infections and associated lesions. Therapeutic vaccines are thus necessary for women who cannot benefit from prophylactic vaccination. Induction of protective immune responses in the genital mucosa (GM) may be crucial for efficacy of HPV therapeutic vaccines. We report here that mice that received a single subcutaneous (s.c.) vaccination of an adjuvanted long synthetic HPV16 E7(1-98) polypeptide showed induction of 100% tumor protection against s.c. TC-1 tumors and that tumor regression was mainly provided by CD8 T cells. In vivo cytotoxic assay revealed high E7-specific cytolytic T lymphocytes activity in spleen and in genital draining lymph nodes (LN), and E7-specific CD8 T cells could be detected in GM by tetramer staining. More importantly, high-avidity E7-specific INF-gamma secreting CD8 T cells were induced not only in blood, spleen and LN but also in GM of vaccinated mice, thus providing evidence that a parenteral vaccination may be sufficient to provide regression of genital tumors. In addition, there was no correlation between the responses measured in blood with those measured in GM, highlighting the necessity and relevance to determine the immune responses in the mucosa where HPV-tumors reside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The murine gut epithelium contains a large population of thymus-derived intraepithelial lymphocytes (IELs), including both conventional CD4(+) and CD8alphabeta(+) T cells (expressing T-cell receptor alphabeta [TCRalphabeta]) and unconventional CD8alphaalpha(+) T cells (expressing either TCRalphabeta or TCRgammadelta). Whereas conventional IELs are widely accepted to arise from recirculation of activated CD4(+) and CD8alphabeta(+) T cells from the secondary lymphoid organs to the gut, the origin and developmental pathway of unconventional CD8alphaalpha IELs remain controversial. We show here that CD4-Cre-mediated inactivation of c-Myc, a broadly expressed transcription factor with a wide range of biologic activities, selectively impairs the development of CD8alphaalpha TCRalphabeta IELs. In the absence of c-Myc, CD4(-) CD8(-) TCRalphabeta(+) thymic precursors of CD8alphaalpha TCRalphabeta IELs are present but fail to develop on adoptive transfer in immunoincompetent hosts. Residual c-Myc-deficient CD8alphaalpha TCRalphabeta IEL display reduced proliferation and increased apoptosis, which correlate with significantly decreased expression of interleukin-15 receptor subunits and lower levels of the antiapoptotic protein Bcl-2. Transgenic overexpression of human BCL-2 resulted in a pronounced rescue of CD8alphaalpha TCRalphabeta IEL in c-Myc-deficient mice. Taken together, our data support a model in which c-Myc controls the development of CD8alphaalpha TCRalphabeta IELs from thymic precursors by regulating interleukin-15 receptor expression and consequently Bcl-2-dependent survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown previously that CD8beta in vitro increases the range and the sensitivity of antigen recognition and in vivo plays an important role in the thymic selection of CD8+ T cells. Consistent with this, we report here that CD8+ T cells from CD8beta knockout (KO) P14 TCR transgenic mice proliferate inefficiently in vitro. In contrast to these findings, we also show that CD8beta KO mice mount normal CD8 primary, secondary and memory responses to acute infection with lymphocytic choriomeningitis virus. Tetramer staining and cytotoxic experiments revealed a predominance of CD8-independent CTL in CD8beta KO mice. The TCR repertoire, especially the one of the TCRalpha chain, was different in CD8beta KO mice as compared with B6 mice. Our results indicate that in the absence of CD8beta, CD8-independent TCRs are preferentially selected, which in vivo effectively compensates for the reduced co-receptor function of CD8alphaalpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca(2+)-regulated calcineurin/nuclear factor of activated T cells (NFAT) cascade controls alternative pathways of T-cell activation and peripheral tolerance. Here, we describe reduction of NFATc2 mRNA expression in the lungs of patients with bronchial adenocarcinoma. In a murine model of bronchoalveolar adenocarcinoma, mice lacking NFATc2 developed more and larger solid tumors than wild-type littermates. The extent of central tumor necrosis was decreased in the tumors in NFATc2((-/-)) mice, and this finding was associated with reduced tumor necrosis factor-alpha and interleukin-2 (IL-2) production by CD8(+) T cells. Adoptive transfer of CD8(+) T cells of NFATc2((-/-)) mice induced transforming growth factor-beta(1) in the airways of recipient mice, thus supporting CD4(+)CD25(+)Foxp-3(+)glucocorticoid-induced tumor necrosis factor receptor (GITR)(+) regulatory T (T(reg)) cell survival. Finally, engagement of GITR in NFATc2((-/-)) mice induced IFN-gamma levels in the airways, reversed the suppression by T(reg) cells, and costimulated effector CD4(+)CD25(+) (IL-2Ralpha) and memory CD4(+)CD127(+) (IL-7Ralpha) T cells, resulting in abrogation of carcinoma progression. Agonistic signaling through GITR, in the absence of NFATc2, thus emerges as a novel possible strategy for the treatment of human bronchial adenocarcinoma in the absence of NFATc2 by enhancing IL-2Ralpha(+) effector and IL-7Ralpha(+) memory-expressing T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing evidence that lymphocytes impact the development and/or function of other lymphocyte populations. Based on such observations we have tested whether the NK cell compartment was phenotypically and functionally altered in the absence of B and/or T cells. Here we show that T cell deficiency significantly accelerates BM NK cell production and the subsequent seeding of splenic and liver NK cell compartments. In contrast, B cell deficiency reduces splenic NK cell survival. In the absence of T and B cells, the size of the NK cell compartments is determined by the combination of these positive and negative effects. Even though NK cell homeostasis is significantly altered, NK cells from T and/or B cell-deficient mice show a normal capacity to kill a susceptible target cell line and to produce IFN. Nevertheless, we noted that the usage of MHC class I-specific Ly49 family receptors was significantly altered in the absence of T and/or B cells. In general, B cell deficiency expanded Ly49 receptor usage, while T cell deficiency exerted both positive and negative effects. These findings show that B and T cells significantly and differentially influence the homeostasis and the phenotype of NK cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytotoxic T-cell and natural killer (NK)-cell lymphomas and related disorders are important but relatively rare lymphoid neoplasms that frequently are a challenge for practicing pathologists. This selective review, based on a meeting of the International Lymphoma Study Group, briefly reviews T-cell and NK-cell development and addresses questions related to the importance of precise cell lineage (αβ-type T cell, γδ T cell, or NK cell), the implications of Epstein-Barr virus infection, the significance of anatomic location including nodal disease, and the question of further categorization of enteropathy-associated T-cell lymphomas. Finally, developments subsequent to the 2008 World Health Organization Classification, including the recognition of indolent NK-cell and T-cell disorders of the gastrointestinal tract are presented.