895 resultados para System failures (Engineering) -- Location


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Understanding the spatial behavior of soil physical properties under no-tillage system (NT) is required for the adoption and maintenance of a sustainable soil management system. The aims of this study were to quantify soil bulk density (BD), porosity in the soil macropore domain (PORp) and in the soil matrix domain (PORm), air capacity in the soil matrix (ACm), field capacity (FC), and soil water storage capacity (FC/TP) in the row (R), interrow (IR), and intermediate position between R and IR (designated IP) in the 0.0-0.10 and 0.10-0.20 m soil layers under NT; and to verify if these soil properties have systematic variation in sampling positions related to rows and interrows of corn. Soil sampling was carried out in transect perpendicular to the corn rows in which 40 sampling points were selected at each position (R, IR, IP) and in each soil layer, obtaining undisturbed samples to determine the aforementioned soil physical properties. The influence of sampling position on systematic variation of soil physical properties was evaluated by spectral analysis. In the 0.0-0.1 m layer, tilling the crop rows at the time of planting led to differences in BD, PORp, ACm, FC and FC/TP only in the R position. In the R position, the FC/TP ratio was considered close to ideal (0.66), indicating good water and air availability at this sampling position. The R position also showed BD values lower than the critical bulk density that restricts root growth, suggesting good soil physical conditions for seed germination and plant establishment. Spectral analysis indicated that there was systematic variation in soil physical properties evaluated in the 0.0-0.1 m layer, except for PORm. These results indicated that the soil physical properties evaluated in the 0.0-0.1 m layer were associated with soil position in the rows and interrows of corn. Thus, proper assessment of soil physical properties under NT must take into consideration the sampling positions and previous location of crop rows and interrows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue¿glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is on state-of-the-art research efforts specific to infrastructure inventory/data collection with sign inventory as a case study. The development of an agency-wide sign inventory is based on feature inventory and location information. Specific to location, a quick and simple location acquisition tool is critical to tying assets to an accurate location-referencing system. This research effort provides a contrast between legacy referencing systems (route and milepost) and global positioning system- (GPS-) based techniques (latitude and longitude) integrated into a geographic information system (GIS) database. A summary comparison of field accuracies using a variety of consumer grade devices is also provided. This research, and the data collection tools developed, are critical in supporting the Iowa Department of Transportation (DOT) Statewide Sign Management System development effort. For the last two years, a Task Force has embarked on a comprehensive effort to develop a sign management system to improve sign quality, as well as to manage all aspects of signage, from request, ordering, fabricating, installing, maintaining, and ultimately removing, and to provide the ability to budget for these key assets on a statewide basis. This effort supported the development of a sign inventory tool and is the beginning of the development of a sign management system to support the Iowa DOT efforts in the consistent, cost effective, and objective decision making process when it comes to signs and their maintenance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa State University (ISU) Bridge Engineering Center (BEC) performed full-scale laboratory testing of the proposed paving notch replacement system. The objective of the testing program was to verify the structural capacity of the proposed precast paving notch system and to investigate the feasibility of the proposed solution. This report describes the laboratory testing procedure and discusses its results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans experience the self as localized within their body. This aspect of bodily self-consciousness can be experimentally manipulated by exposing individuals to conflicting multisensory input, or can be abnormal following focal brain injury. Recent technological developments helped to unravel some of the mechanisms underlying multisensory integration and self-location, but the neural underpinnings are still under investigation, and the manual application of stimuli resulted in large variability difficult to control. This paper presents the development and evaluation of an MR-compatible stroking device capable of presenting moving tactile stimuli to both legs and the back of participants lying on a scanner bed while acquiring functional neuroimaging data. The platform consists of four independent stroking devices with a travel of 16-20 cm and a maximum stroking velocity of 15 cm/s, actuated over non-magnetic ultrasonic motors. Complemented with virtual reality, this setup provides a unique research platform allowing to investigate multisensory integration and its effects on self-location under well-controlled experimental conditions. The MR-compatibility of the system was evaluated in both a 3 and a 7 Tesla scanner and showed negligible interference with brain imaging. In a preliminary study using a prototype device with only one tactile stimulator, fMRI data acquired on 12 healthy participants showed visuo-tactile synchrony-related and body-specific modulations of the brain activity in bilateral temporoparietal cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary purpose of this project was to assess the potential of a nondestructive remote sensing system, specifically, ground penetrating subsurface interface radar, for identification and evaluation of D-cracking pavement failures. A secondary purpose was to evaluate the effectiveness of this technique for locating voids under pavements and determining the location of steel reinforcement. From the data collected and the analysis performed to date, the following conclusions can be made regarding the ground penetrating radar system used for this study: (1) steel reinforcement can be accurately located; (2) pavement thickness can be determined; (3) distressed areas in pavements can be located and broadly classified as to severity of deterioration; (4) voids under pavements can be located; and (5) higher resolution recording equipment is required to accurately determine both the thickness of sound pavement remaining over distressed areas and the depth of void areas under pavements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report documents an extensive field program carried out to identify the relationships between soil engineering properties, as measured by various in situ devices, and the results of machine compaction monitoring using prototype compaction monitoring technology developed by Caterpillar Inc. Primary research tasks for this study include the following: (1) experimental testing and statistical analyses to evaluate machine power in terms of the engineering properties of the compacted soil (e.g., density, strength, stiffness) and (2) recommendations for using the compaction monitoring technology in practice. The compaction monitoring technology includes sensors that monitor the power consumption used to move the compaction machine, an on-board computer and display screen, and a GPS system to map the spatial location of the machine. In situ soil density, strength, and stiffness data characterized the soil at various stages of compaction. For each test strip or test area, in situ soil properties were compared directly to machine power values to establish statistical relationships. Statistical models were developed to predict soil density, strength, and stiffness from the machine power values. Field data for multiple test strips were evaluated. The R2 correlation coefficient was generally used to assess the quality of the regressions. Strong correlations were observed between averaged machine power and field measurement data. The relationships are based on the compaction model derived from laboratory data. Correlation coefficients (R2) were consistently higher for thicker lifts than for thin lifts, indicating that the depth influencing machine power response exceeds the representative lift thickness encountered under field conditions. Caterpillar Inc. compaction monitoring technology also identified localized areas of an earthwork project with weak or poorly compacted soil. The soil properties at these locations were verified using in situ test devices. This report also documents the steps required to implement the compaction monitoring technology evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excessive speed on State and County highways is recognized as a serious problem by many Iowans. Speed increases both the risk and severity of accidents. Studies conducted by the FHWA and NHTSA have concluded that if average speeds were increased by five MPH, fatalities would increase by at least 2,200 annually. Along with the safety problems associated with excessive speed are important energy considerations. When the national speed limit was lowered to 55 MPH in 1974, a tremendous savings in fuel was realized. The estimated actual savings for automobiles amounted to 2.2 billion gallons, an average of 20.75 gallons for each of the 106 million automobiles registered in 1975. These benefits prompted the Federal-Aid Amendment of 1974 requiring annual State enforcement certification as a prerequisite for approval of Federal-aid highway projects. In 1978, the United States D.O.T. recommended to Congress significant changes in speed limit legislation designed to increase compliance with the national speed limit. The Highway Safety Act of 1978 provides for both withholding Federal-aid highway funds and awarding incentive grants based on speed compliance data submitted annually. The objective of this study was to develop and make operational, an automatic speed monitoring system which would have flexible capabilities of collecting accurate speed data on all road systems in Iowa. It was concluded that the Automatic Speed Monitoring Program in Iowa has been successful and needed data is being collected in the most economical manner possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a great deal of concern by county engineers and supervisors over constrained budgets, lack of resources and a deteriorating infrastructure, as they affect the secondary road system in Iowa. In addition, public input and/or political pressure have been increasing over the years. This study was initiated to determine the most important issues facing counties and document the way in which various Iowa counties have been addressing those issues. The list of issues was developed through meetings of county engineers and supervisors in each of the Iowa Department of Transportation (DOT) regions around the state. Questionnaires were sent to all engineers and supervisors statewide asking them how the various issues (e.g. snow and ice removal policies, Level "B" roads, and so on) were handled in their respective counties. The responses were then compiled into this document. The subjects selected and used include: county policies, ordinances, resolutions; snow and ice removal policy; dust control; Level "B" roads; vacating roads; rural development; private entrance construction and maintenance; roadside management practices; right of way encroachments and easements; personnel matters, staff and organization; communicating information to citizens; supervisor/ engineer relations; and county leasing/purchasing practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iowa's public road system of 112,000 miles is one of the largest and the best in the nation. It represents a considerable financial investment of taxpayer revenues over the years. And, it requires a sustained investment to preserve an economical level of transport service into the future. In 1982, a Governor's Blue Ribbon Transportation Task Force evaluated the effectiveness of Iowa's entire transportation system. Four important Task Force recommendations dealt with public road administrative issues in Iowa. These issues were related to: (1) Design criteria and levels of maintenance; (2) Consistency in the use of standards among jurisdictions; (3) Consolidation of maintenance operations at one jurisdiction level; and (4) Jurisdicational authority for roads; The issues formed the background for Research Project HR-265.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iowa's public road system of 112,000 miles is one of the largest and the best in the nation. It represents a considerable financial investment of taxpayer revenues over the years. And, it requires a sustained investment to preserve an economical level of transport service into the future. In 1982, a Governor's Blue Ribbon Transportation Task Force evaluated the effectiveness of Iowa's entire transportation system. Four important Task Force recommendations dealt with public road administrative issues in Iowa. These issues were related to: 1. design criteria and levels of maintenance 2. consistency in the use of standards among jurisdictions 3. consolidation of maintenance operations at one jurisdictional level and 4. jurisdictional authority for roads. The issues formed the background for Research Project HR-265.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Iowa it is normal procedure to either use partial or full-depth patching to repair deteriorated areas of pavement prior to resurfacing. The Owens/Corning Corporation introduced a repair system to replace the patching process. Their Roadglas repair system was used in this research project on US 30 in Story County. It was installed in 1985 and has been observed annually since that time. There were some construction problems with slippage as the roller crossed the abundant Roadglas binder. It appears the Roadglas system has helped to control reflective cracking in the research areas. Since the time when this project was completed it has been reported that Owens/Corning has discontinued production of the Roadglas system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A network of 25 sonic stage sensors were deployed in the Squaw Creek basin upstream from Ames Iowa to determine if the state-of-the-art distributed hydrological model CUENCAS can produce reliable information for all road crossings including those that cross small creeks draining basins as small as 1 sq. mile. A hydraulic model was implemented for the major tributaries of the Squaw Creek where IFC sonic instruments were deployed and it was coupled to CUENCAS to validate the predictions made at small tributaries in the basin. This study demonstrates that the predictions made by the hydrological model at internal locations in the basins are as accurate as the predictions made at the outlet of the basin. Final rating curves based on surveyed cross sections were developed for the 22 IFC-bridge sites that are currently operating, and routine forecast is provided at those locations (see IFIS). Rating curves were developed for 60 additional bridge locations in the basin, however, we do not use those rating curves for routine forecast because the lack of accuracy of LiDAR derived cross sections is not optimal. The results of our work form the basis for two papers that have been submitted for publication to the Journal of Hydrological Engineering. Peer review of our work will gives a strong footing to our ability to expand our results from the pilot Squaw Creek basin to all basins in Iowa.