958 resultados para Suspended sediment
Resumo:
In this study, the seasonal, vertical distribution of various phosphorus and nitrogen forms in the sediment and overlying water of Donghu Lake were investigated. The concentration of total nitrogen (TN) in overlying water was high in spring and autumn, but that of NO3--N reached its peak in autumn. From summer to autumn and from winter to spring, the concentration of phosphorus in overlying water decreased, while it increased from autumn to winter. Vertical characteristic forms of phosphorus in sediment cores are total phosphorus (TP), labile phosphorus (LP), Fe-P and Al-P, obviously enriched in the surface layer (0-10 cm), but their concentrations are observably reduced along with the depth of sediment. The research is of important theoretical and practical value to understand the status and to control the developmental trend of eutrophication in Donghu Lake.
Resumo:
The acid-volatile sulfide (AVS), simultaneously extracted metals (SEM), total metals, and chemical partitioning in the sediment cores of the Pearl River Estuary (PRE) were studied. The concentrations of total metals, AVS, and SEM in the sediment cores were generally low in the river outlet area, increased along the seaward direction, and decreased again at the seaward boundary of the estuary. The amounts of AVS were generally greater in deeper sediments than in surface sediments. SEM/AVS was > 1 in the surface sediments and in the river outlet cores. The ratio was < 1 in the sediments down the profiles, suggesting that AVS might play a major role in binding heavy metals in the deep sediments of the PRE. The SEM may contain different chemical forms of trace metals in the sediments, depending on the metal reaction with 1 M cold HCl in the AVS procedure compared with the results of the sequential chemical extraction. The SEM/AVS ratio prediction may overestimate trace metal availability even in the sediments with high AVS concentrations. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
To clarify the possible influence of Microcystis blooms on the exchange of phosphorus (P) between sediment and lake water, an enclosure experiment was conducted in the hypereutrophic subtropical Lake Donghu during July-September 2000. Eight enclosures were used: six received sediment while two were sediment-free. In mid-August, Microcystis blooms developed in all the enclosures. There was a persistent coincidence between the occurrence of Microcystis blooms and the increase of both total P (TP) and soluble reactive P (SRP) concentrations in the water of the enclosures with sediments. In sediment-free enclosures, TP and SRP concentrations remained rather stable throughout the experiment, in spite of the appearance of Microcystis blooms. The results indicate that Microcystis blooms induced massive release of P from the sediment, perhaps mediated by high pH caused by intense algal photosynthesis, and/or depressed concentrations of nitrate nitrogen (NO3-N). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Variations in kinetics of alkaline phosphatase occurring in different sites of sediment associated with cage culture of Oreochromis niloticus in a shallow Chinese freshwater lake (Lake Donghu) were described. In addition, the kinetic parameters of each 2.5-cm stratum in the sediment from the surface down to 37.5 cm were analyzed. Horizontally, the V-max values of alkaline phosphatase in surface sediments increased markedly at sites immediately under and adjacent to the cage that would be subjected to the deposition of fish feces. Peak V-max values in the top 5 cm of the sediment under the cage were also observed relative to their deeper control. After a treatment where the fish feces were added over 12 days, the sediment in deeper layer exhibited a significantly higher V-max value, thereby corroborating the relationship between V-max values of alkaline phosphatase and fish feces in sediments. The fish feces exhibited a remarkable alkaline phosphatase activity (APA). Thus, it is indeed a source of the enzyme. Effects of the fish feces were dose- and time-dependent. The V-max values in sediments were always stimulated, but the K-m values showed much more variability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this study, by the use of partial least squares (PLS) method and 26 quantum chemical descriptors computed by PM3 Hamiltonian, a quantitative structure-property relationship (QSPR) model was developed for reductive dehalogenation rate constants of 13 halogenated aliphatic compounds in sediment slurry under anaerobic conditions. The model can be used to explain the dehalogenation mechanism. Halogenated aliphatic compounds with great energy of the lowest unoccupied molecular orbital (E-lumo), total energy (TE), electronic energy (EE), the smallest bond order of the carbon-halogen bonds (BO) and the most positive net atomic charges on an atom of the molecule (q(+)) values tend to be reductively dehalogenated slow, whereas halogenated aliphatic compounds with high values of molecular weight (Mw), average molecular polarizability (a) and core-core repulsion energy (CCR) values tend to be reductively dehalogenated fastest. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
The sediment of Ya-Er Lake had been heavily polluted by polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the former chloralkali industry. The total amounts of PCDD/Fs and I-TEQ decreased along the water flow direction and also decreased from top to bottom layers of sediment cores. Sediment of Pond 1 was dominated by PCDF, especially TCDF. In contrast, in the other four ponds, PCDD dominated in all layers and octachlorinated dibenzo-p-dioxin (OCDD) predominated in all of the homologues. When homologue profiles from sediments and water samples were compared using principal component analysis (PCA), the first two principal components represented 95.2% of the variance in the data. The first component explained 75.9% of the variance and the second one 19.3%. Two clusters were most distinct, presenting a shift in PCDD/Fs composition from PCDF to heptachlorinated dibenzo-p-dioxin (HpCDD) and OCDD in sediments and water from Pond I to Ponds 2-5. The pattern variation between Pond 1 and Ponds 2-5 in Ya-Er Lake was most likely due to the change of process in the chemical plant after the dams between the ponds were built. The results of the present study also showed that log K-oc of PCDD/Fs calculated from data of sediment and water in the field were comparable with theoretical log K-oc. The results also implied that the concentrations of PCDD/Fs in water and sediments could be predicted from each other by log K-oc. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Cytological and biochemical alterations of crucial carp (Carassius auratus) hepatocytes were characterized after exposure to sediments from a lake contaminated with dioxins and other industrial chemicals. Carp were exposed in 20 L water containing 25, 50, or 100 g of contaminated sediment for 2 and 4 weeks. Ultrastructural changes in the liver were characterized by severe enlargement of hepatocytes. Alterations in the cell. included formation of condensed and irregular cell nucleus, polynuclei, dispersed heterochromatin, enlargement of the nucleolus, and degeneration of the nucleus. Mitochondrial numbers were reduced and cristae were deformed. Myelin figures and lysosomes were increased, and sometimes cell organelles and cell matrix were totally lost after 4 weeks of exposure. The ultrastructural alterations were correlated with exposure time and sediment concentrations. Hepatosometic index was significantly increased in experimental groups at 2 and 4 weeks as compared with the control group. EROD enzyme activities were strongly induced in liver. A trend from rough endoplasmic reticulum (RER) to SER was observed. Our results suggest that the dioxin-like compounds bound by sediment were bioavailable to C. auratus and cause sublethal effects.
Resumo:
Several biochemical responses were measured in silver crucian carp (Carassius auratus gibelio) after exposure to sediments obtained from contaminated Ya-Er Lake, No, 1 pond, and an unpolluted reference site, Honglian Lake. After 1 week of exposure, a significant induction of the phase I biotransformation enzyme (ethoxylresorufin-o-deethylase, EROD) was found (83-fold of control), whereas the phase II biotransformation enzyme (glutathione S-transferase, GST) exhibited a slight, but significant induction (1,4-fold of control) after 4 weeks of exposure. The level of cellular glutathione in the liver was also slightly elevated after 4 weeks of exposure. The delayed response of GST to the contaminants indicates that the phase I and phase II biotransformation enzymes are regulated differently in fish. The results suggest that EROD is a sensitive bioindicator to assess the toxicity of dioxin-contamined sediment in the laboratory, (C) 1998 Academic Press.
Resumo:
This paper reported the sorption, biodegradation and isomerization of hexachlorocyclohexane (HCH) in laboratory sediment/water system under aerobic and anaerobic conditions, respectively. The effect of organic nutrient addition to the sorption of HCH was also investigated. It indicates that HCH is highly adsorbed on sediments under both conditions. During the tests, the biodegradation and isomerization of HCH were dramatically speeded up after organic nutrient additions, especially in the case of the observation under aerobic condition. It was found, beta-HCH was the most persistent in the environment, that is due to the isomerization of alpha-HCH in a big amount to beta-HCH, besides its chemical stability. (C) 1997 Elsevier Science Ltd.
Resumo:
The dissociation process of gas hydrate was regarded as a gas-solid reaction without solid production layer when the temperature was above the zero centigrade. Based on the shrinking core model and the fractal theory, a fractional dimension dynamical model for gas hydrate dissociation in porous sediment was established. The new approach of evaluating the fractal dimension of the porous media was also presented. The fractional dimension dynamical model for gas hydrate dissociation was examined with the previous experimental data of methane hydrate and carbon dioxide hydrate dissociations, respectively. The calculated results indicate that the fractal dimensions of porous media acquired with this method agree well with the previous study. With the absolute average deviation (AAD) below 10%, the present model provided satisfactory predictions for the dissociation process of methane hydrate and carbon dioxide hydrate.
Resumo:
The gas production behavior from methane hydrate in porous sediment by injecting the brine with the salinity of 0−24 wt % and the temperature of −1 to 130 °C was investigated in a one-dimensional experimental apparatus. The results show that the gas production process consists of three periods: the free gas production, the hydrate dissociation, and the general gas reservoir production. The hydrate dissociation accompanies the temperature decrease with the injection of the brine (NaCl solution), and the dissociation duration is shortened with the increase of the salinity. With the injection of hot brine, instantaneous hydrate dissociation rate also increases with the increase of the salinity. However, while the NaCl concentration is beyond a certain value, the rate has no longer continued increasing. Thermal efficiency and energy ratio for the hydrate production can be enhanced by injecting hot brine, and the enhanced effectiveness is quite good with the injection of high salinity at lower temperature.
Resumo:
This article investigates the gas production behavior from methane hydrate (MH) in porous sediment by injecting ethylene glycol (EG) solution with the different concentrations and the different injection rates in an one-dimensional experimental apparatus. The results suggest that the gas production process can be divided into the four stages: (1) the initial injection, (2) the EG diluteness, (3) the hydrate dissociation, and (4) the remained gas output. Nevertheless, the water production rate keeps nearly constant during the whole production process. The production efficiency is affected by both the EG concentration and the EG injection rate, and it reaches a maximum with the EG concentration of 60 wt %.