928 resultados para Sudge recycling
Resumo:
Retinitis pigmentosa (RP) is an inherited form of retinal degeneration that leads to progressive visual-field constriction and blindness. Although the disease manifests only in the retina, mutations in ubiquitously expressed genes associated with the tri-snRNP complex of the spliceosome have been identified in patients with dominantly inherited RP. We screened for mutations in PRPF6 (NM_012469.3), a gene on chromosome 20q13.33 encoding an essential protein for tri-snRNP assembly and stability, in 188 unrelated patients with autosomal-dominant RP and identified a missense mutation, c.2185C>T (p.Arg729Trp). This change affected a residue that is conserved from humans to yeast and cosegregated with the disease in the family in which it was identified. Lymphoblasts derived from patients with this mutation showed abnormal localization of endogenous PRPF6 within the nucleus. Specifically, this protein accumulated in the Cajal bodies, indicating a possible impairment in the tri-snRNP assembly or recycling. Expression of GFP-tagged PRPF6 in HeLa cells showed that this phenomenon depended exclusively on the mutated form of the protein. Furthermore, analysis of endogenous transcripts in cells from patients revealed intron retention for pre-mRNA bearing specific splicing signals, according to the same pattern displayed by lymphoblasts with mutations in other PRPF genes. Our results identify PRPF6 as the sixth gene involved in pre-mRNA splicing and dominant RP, corroborating the hypothesis that deficiencies in the spliceosome play an important role in the molecular pathology of this disease.
Resumo:
The enzyme glutamate dehydrogenase (GDH) is important for recycling the chief excitatory neurotransmitter, glutamate, during neurotransmission. Human GDH exists in housekeeping and brain-specific isotypes encoded by the genes GLUD1 and GLUD2, respectively. Here we show that GLUD2 originated by retroposition from GLUD1 in the hominoid ancestor less than 23 million years ago. The amino acid changes responsible for the unique brain-specific properties of the enzyme derived from GLUD2 occurred during a period of positive selection after the duplication event.
Resumo:
Since the initial description of astrocytes by neuroanatomists of the nineteenth century, a critical metabolic role for these cells has been suggested in the central nervous system. Nonetheless, it took several technological and conceptual advances over many years before we could start to understand how they fulfill such a role. One of the important and early recognized metabolic function of astrocytes concerns the reuptake and recycling of the neurotransmitter glutamate. But the description of this initial property will be followed by several others including an implication in the supply of energetic substrates to neurons. Indeed, despite the fact that like most eukaryotic non-proliferative cells, astrocytes rely on oxidative metabolism for energy production, they exhibit a prominent aerobic glycolysis capacity. Moreover, this unusual metabolic feature was found to be modulated by glutamatergic activity constituting the initial step of the neurometabolic coupling mechanism. Several approaches, including biochemical measurements in cultured cells, genetic screening, dynamic cell imaging, nuclear magnetic resonance spectroscopy and mathematical modeling, have provided further insights into the intrinsic characteristics giving rise to these key features of astrocytes. This review will provide an account of the different results obtained over several decades that contributed to unravel the complex metabolic nature of astrocytes that make this cell type unique.
Resumo:
Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.
Resumo:
Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.
Resumo:
Development of dialysis has saved the lives of many patients. However, haemodialysis and peritoneal dialysis are very demanding in resources such as water and electricity, and generate a large amount of waste. In this article, we will review the environmental aspects of dialysis. Different solutions will be discussed, such as recycling of water discharged during reverse osmosis, the integration of solar energy, recycling of waste plastics, and the use of other techniques such as sorbent dialysis. In a world where natural resources are precious and where global warming is a major problem, it is important that not only dialysis, but all branches of medicine become more attentive to ecology.
Resumo:
Estudi de les possibles solucions per al tractament de la resta vegetal al municipi de Porqueres. S’estudia la tecnologia més eficient per valoritzar el residu verd per tal d’obtenir un producte final reutilitzable, beneficiós i sostenible, tant ambientalment com socialment. Actualment és tractat com a residu, la qual cosa suposa un cost de gestió important
Resumo:
Securin and separase play a key role in sister chromatid separation during anaphase. However, a growing body of evidence suggests that in addition to regulating chromosome segregation, securin and separase display functions implicated in membrane traffic in Caenorhabditis elegans and Drosophila. Here we show that in mammalian cells both securin and separase associate with membranes and that depletion of either protein causes robust swelling of the trans-Golgi network (TGN) along with the appearance of large endocytic vesicles in the perinuclear region. These changes are accompanied by diminished constitutive protein secretion as well as impaired receptor recycling and degradation. Unexpectedly, cells depleted of securin or separase display defective acidification of early endosomes and increased membrane recruitment of vacuolar (V-) ATPase complexes, mimicking the effect of the specific V-ATPase inhibitor Bafilomycin A1. Taken together, our findings identify a new functional role of securin and separase in the modulation of membrane traffic and protein secretion that implicates regulation of V-ATPase assembly and function.
Resumo:
Aplicació d'una DAOM (Diagnosi Ambiental d’Oportunitats de Minimització)a l'Ajuntament de Banyoles. Una DAOM és una eina desenvolupada pel Centre per a l’Empresa i el Medi Ambient, que consisteix en l’avaluació d’una activitat o procés, per determinar les possibles oportunitats de prevenció i reducció en origen de la contaminació, i aportar-hi alternatives d’actuació tècnica i econòmicament viables
Resumo:
Newsletter for Department of Natural Resources, Waste Management Division
Resumo:
Newsletter produced by Department Natural Resources, Waste Managment Division
Resumo:
Newsletter prdouced by Department of Natural Resources, Waste Matters Division
Resumo:
Newsletter produced by Department of Natural Resources, Waste Management Division
Resumo:
Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.
Resumo:
In recent years, previously unsuspected roles of astrocytes have been revealed, largely owing to the development of new tools enabling their selective study in situ. These exciting findings add to the large body of evidence demonstrating that astrocytes play a central role in brain homeostasis, in particular via the numerous cooperative metabolic processes they establish with neurons, such as the supply of energy metabolites and neurotransmitter recycling functions. Furthermore, impairments in astrocytic function are increasingly being recognized as an important contributor to neuronal dysfunction and, in particular, neurodegenerative processes. In this review, we discuss recent evidence supporting important roles for astrocytes in neuropathological conditions such as neuroinflammation, amyotrophic lateral sclerosis and Alzheimer's disease. We also explore the potential for neuroprotective therapeutics based on the modulation of astrocytic functions.