949 resultados para Stimulated Glut4 Translocation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of IgG on cytokine production by human mononuclear cells (MNC) was studied. Tumor necrosis factor-alpha (TNF) was determined both by bioassay and by immunoassay. Interleukin-1 (IL1) was measured by a thymocyte costimulator assay, which was shown to be completely inhibitable by polyclonal anti-IL1. Precautions were taken to avoid inadvertent exposure of the studied cells to endotoxin. In a first model, TNF and IL1 production by adherent MNC in IgG-coated cluster plates were determined. IgG induced a strong TNF response, usually leveling off after 6 hr, and was comparable in kinetics and magnitude with an LPS-induced response. The thymocyte co-stimulatory activity response was relatively weak and peaked at 6 hr. In contrast, LPS-induced co-stimulatory activity production steadily increased over 24 hr. In a second model, MNC in suspension cultures containing autologous serum were exposed to IgG for intravenous use (IgG-IV). Cells exposed to IgG-IV produced higher amounts of cytokines than control counterparts and were primed for enhanced production of cytokines upon a second, unrelated stimulus. This implies that the effect of IgG-IV on suspended MNC resembles that of surface-adsorbed IgG and raises the possibility that cytokine release is an integral part of the mechanism of action of infused IgG. Evidence is presented suggesting that both surface IgG and IgG-IV act directly on monocytes, in a Fc-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic immune activation, a major determinant of HIV disease progression, is the result of a complex interplay between viral replication, dysregulation of the immune system, and microbial translocation due to gut mucosal damage. While human genetic variants influencing HIV viral load have been identified, it is unknown to what extent the host genetic background contributes to inter-individual differences in other determinants of HIV pathogenesis like gut damage and microbial translocation. Using samples and data from 717 untreated participants in the Swiss HIV Cohort Study and a genome-wide association study design, we searched for human genetic determinants of plasma levels of intestinal fatty-acid binding protein (I-FABP/FABP2), a marker of gut damage, and of soluble sCD14 (sCD14), a marker of LPS bioactivity and microbial translocation. We also assessed the correlations between HIV viral load, sCD14 and I-FABP. While we found no genome-wide significant determinant of the tested plasma markers, we observed strong associations between sCD14 and both HIV viral load and I-FABP, shedding new light on the relationships between processes that drive progression of untreated HIV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infections are the major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma worldwide. Both spontaneous and treatment-induced clearance of HCV depend on genetic variation within the interferon-lambda locus, but until now no clear causal relationship has been established. Here we demonstrate that an amino-acid substitution in the IFNλ4 protein changing a proline at position 70 to a serine (P70S) substantially alters its antiviral activity. Patients harbouring the impaired IFNλ4-S70 variant display lower interferon-stimulated gene (ISG) expression levels, better treatment response rates and better spontaneous clearance rates, compared with patients coding for the fully active IFNλ4-P70 variant. Altogether, these data provide evidence supporting a role for the active IFNλ4 protein as the driver of high hepatic ISG expression as well as the cause of poor HCV clearance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout follicular growth the number of immune cells increases, enhanced under stimulation with exogenous gonadotropins. This treatment, however, may adversely influence folliculogenesis and negatively affect oocyte quality through modifications in the follicular concentrations of cytokines released by these immune cells. We studied this hypothesis by systematically analysing the concentrations of cytokines present in the serum and follicular fluid at the time of follicular aspiration in conventional gonadotropin-stimulated (c-IVF) cycles in comparison with natural cycle IVF (NC-IVF) in which the follicles were naturally matured. Our study involved 37 NC-IVF and 39 c-IVF cycles including 13 women who underwent both therapies. Mean age was 35.3 ± 4.6 (SD) and 34.2 ± 3.7 years in the NC-IVF and c-IVF groups (ns). Thirteen cytokines were determined in matched serum and FF samples. Interleukin (IL)-4, TNF-α, RANTES, eotaxin and interferon-gamma-induced protein-10 concentrations were lower in FF than in serum. IL-6, -8, -10, -18, monocyte chemotactic protein-1 (MCP-1), VEGF and leukaemia inhibitory factor (LIF) showed higher median levels in FF than in serum, indicating possible ovarian production. Most of these markers were also increased in concentration in the stimulated (c-IVF) than in the NC groups in the serum, but not in the follicular fluid. This finding can be attributed to the increased number of active follicles present after controlled ovarian stimulation. IL-8 was reduced in c-IVF cycles. Our study did not reveal differences in follicular fluid but in serum cytokine concentrations, suggesting that the follicular immune system might not be significantly affected by gonadotropin stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drought strongly influences root activities in crop plants and weeds. This paper is focused on the performance of the heavy metal accumulator Solanum nigrum, a plant which might be helpful for phytoremediation. The water potential in a split root system was decreased by the addition of polyethylene glycol (PEG 6000). Rubidium, strontium and radionuclides of heavy metals were used as markers to investigate the uptake into roots, the release to the shoot via the xylem, and finally the basipetal transport via the phloem to unlabeled roots. The uptake into the roots (total contents in the plant) was for most makers more severely decreased than the transport to the shoot or the export from the shoot to the unlabeled roots via the phloem. Regardless of the water potential in the labeling solution, 63Ni and 65Zn were selectively redistributed within the plant. From autoradiographs, it became evident that 65Zn accumulated in root tips, in the apical shoot meristem and in axillary buds, while 63Ni accumulated in young expanded leaves and roots but not in the meristems. Since both radionuclides are mobile in the phloem and are, therefore, well redistributed within the plant, the unequal transfer to shoot and root apical meristems is most likely caused by differences in the cell-to-cell transport in differentiation zones without functional phloem (immature sieve tubes).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The study was designed to compare the effect of in vitro FSH stimulation on the hormone production and gene expression profile of granulosa cells (GCs) isolated from single naturally matured follicles obtained from natural cycle in vitro fertilization (NC-IVF) with granulosa cells obtained from conventional gonadotropin-stimulated IVF (c-IVF). METHODS Lutein granulosa cells from the dominant follicle were isolated and cultured in absence or presence of recombinant FSH. The cultures were run for 48 h and six days. Messenger RNA (mRNA) expressions of anti-Müllerian hormone (AMH) and FSH receptor were measured by quantitative polymerase chain reaction (qPCR). AMH protein and progesterone concentration (P4) in cultured supernatant were measured by ELISA and RIA. RESULTS Our results showed that the mRNA expression of AMH was significantly higher in GCs from NC- than from c-IVF on day 6 after treatment with FSH (1 IU/mL). The FSH stimulation increased the concentration of AMH in the culture supernatant of GCs from NC-IVF compared with cells from c-IVF. In the culture medium, the AMH level was correlated significantly and positively to progesterone concentration. CONCLUSIONS Differences in the levels of AMH and progesterone released into the medium by cultured GC as well as in AMH gene expression were observed between GCs obtained under natural and stimulated IVF protocols. The results suggest that artificial gonadotropin stimulation may have an effect on the intra-follicular metabolism. A significant positive correlation between AMH and progesterone may suggest progesterone as a factor influencing AMH secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erratum for Reduced IFNλ4 activity is associated with improved HCV clearance and reduced expression of interferon-stimulated genes. [Nat Commun. 2014]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The aetiology of hyposalivation in haematopoietic stem cell transplantation (HSCT) recipients is not fully understood. This study examined the effects of treatment-related aetiological factors, particularly medications, on stimulated salivary flow in HSCT recipients. SUBJECTS AND METHODS Adult HSCT recipients (N = 118, 66 males, 27 autologous and 91 allogeneic transplants) were examined. Stimulated whole salivary flow rates (SWSFR) were measured before HSCT and at 6 and 12 months post-HSCT. Linear regression models were used to analyse the associations of medications and transplant-related factors with salivary flow rates, which were compared to salivary flow rates of generally healthy controls (N = 247). RESULTS The SWSFR of recipients were lower pre-HSCT (mean ± standard deviation, 0.88 ± 0.56 ml/min; P < 0.001), 6 months post-HSCT (0.84 ± 0.61; P < 0.001) and 12 months post-HSCT (1.08 ± 0.67; P = 0.005) than the SWSFR of controls (1.31 ± 0.65). In addition, hyposalivation (<0.7 ml/min) was more frequent among HSCT recipients pre-HSCT (P < 0.001), 6 months post-HSCT (P < 0.001) and 12 months post-HSCT (P = 0.01) than among controls. The SWSFR was observed to improve over time being significantly higher 12 months post-HSCT compared to pre-HSCT (P < 0.001). The observed decrease of salivary flow could not be explained by the examined transplant-related factors and medications. CONCLUSIONS Decreased stimulated salivary flow rates could not be explained by the examined factors alone; these findings indicate that hyposalivation in HSCT recipients exhibits a multifactorial aetiology. CLINICAL RELEVANCE All HSCT recipients should be considered to be at high risk of hyposalivation and consequent oral diseases, and they should be treated accordingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldosterone is an important factor supporting placental growth and fetal development. Recently, expression of placental growth factor (PlGF) has been observed in response to aldosterone exposure in different models of atherosclerosis. Thus, we hypothesized that aldosterone up-regulates growth-adaptive angiogenesis in pregnancy, via increased placental PlGF expression. We followed normotensive pregnant women (n = 24) throughout pregnancy and confirmed these results in a second independent first trimester cohort (n = 36). Urinary tetrahydroaldosterone was measured by gas chromatography-mass spectrometry and corrected for creatinine. Circulating PlGF concentrations were determined by ELISA. Additionally, cultured cell lines, adrenocortical H295R and choriocarcinoma BeWo cells, as well as primary human third trimester trophoblasts were tested in vitro. PlGF serum concentrations positively correlated with urinary tetrahydroaldosterone corrected for creatinine in these two independent cohorts. This observation was not due to PlGF, which did not induce aldosterone production in cultured H295R cells. On the other hand, PlGF expression was specifically enhanced by aldosterone in the presence of forskolin (p < 0.01) in trophoblasts. A pronounced stimulation of PlGF expression was observed with reduced glucose concentrations simulating starvation (p < 0.001). In conclusion, aldosterone stimulates placental PlGF production, enhancing its availability during human pregnancy, a response amplified by reduced glucose supply. Given the crucial role of PlGF in maintaining a healthy pregnancy, these data support a key role of aldosterone for a healthy pregnancy outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor beta-1 (TGF-β1) is a cytokine and neurotrophic factor whose neuromodulatory effects in Aplysia californica were recently described. Previous results demonstrated that TGF-β1 induces long-term increases in the efficacy of sensorimotor synapses, a neural correlate of sensitization of the defensive tail withdrawal reflex. These results provided the first evidence that a neurotrophic factor regulates neuronal plasticity associated with a simple form of learning in Aplysia, and raised many questions regarding the nature of the modulation. No homologs of TGF-β had previously been identified in Aplysia, and thus, it was not known whether components of TGF-β1 signaling pathways were present in Aplysia. Furthermore, the signaling mechanisms engaged by TGF-β1 had not been identified, and it was not known whether TGF-β1 regulated other aspects of neuronal function.^ The present investigation into the actions of TGF-β1 was initiated by examining the distribution of the type II TGF-β1 receptor, the ligand binding receptor. The receptor was widely distributed in the CNS and most neurons exhibited somatic and neuritic immunoreactivity. In addition, the ability of TGF-β1 to activate the cAMP/PKA and MAPK pathways, known to regulate several important aspects of neuronal function, was examined. TGF-β1 acutely decreased cAMP levels in sensory neurons, activated MAPK and triggered translocation of MAPK to the nucleus. MAPK activation was critical for both short- and long-term regulation of neuronal function by TGF-β1. TGF-β1 acutely decreased synaptic depression induced by low frequency stimuli in a MAPK-dependent manner. This regulation may result, at least in part, from the modulation of synapsin, a major peripheral synaptic vesicle protein. TGF-β1 stimulated MAPK-dependent phosphorylation of synapsin, a process believed to regulate synaptic vesicle mobilization from reserve to readily-releasable pools of neurotransmitter. In addition to its acute effect on synaptic efficacy, TGF-β1 also induced long-term increases in sensory neuron excitability. Whereas transient exposure to TGF-β1 was not sufficient to drive short-or long-term changes in excitability, prolonged exposure to TGF-β1 induced long-term changes in excitability that depended on MAPK. The results of these studies represent significant progress toward an understanding of the role of TGF-β1 in neuronal plasticity. ^