950 resultados para Steam Turbine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-steam-treatment is a facile and effective method for improving the catalytic performances of Mo/HZSM-5 catalysts in methane dehydroaromatization under nonoxidative conditions. The treatment can enhance the stability of the catalyst and also give a higher methane conversion and a higher yield of light aromatics, as well as a decrease in the formation rate of carbonaceous deposits. (27)Al, (29)Si, and (1)H multinuclear magic angle spinning nuclear magnetic resonance, X-ray photoelectron spectroscopy, X-ray diffraction, X-ray fluorescence spectroscopy, and thermogravimetric analysis measurements as well as catalytic reaction evaluations were employed to conduct comparative studies on the properties of the catalysts before and after the post-steam-treatment. The results revealed that the number of free Bronsted acid sites per unit cell decreased, while more Mo species migrated into the HZSM-5 channels for the 6Mo/HZSM-5 catalysts after the post-steam-treatment. In addition, the average pore diameter was also larger for the post-steam-treated catalysts, and this was advantageous for mass transport of the reaction products. However, a severe post-steam-treatment, i.e., with longer treating time, of the 6Mo/HZSM-5 catalyst will lead to the formation of the Al(2)(MoO(4))(3) phases, which is detrimental to the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of producing hydrogen for fuel cell which used normal octane as gasoline or diesel oil reactant through catalytic partial oxidizing and steam reforming method has been researched in the fixed-bed reactor. A series of catalysts that mainly used nickel supported on Al2O3 have been studied. It showed that the activity of the catalyst was increased with the content of nickel by using only nickel supported on Al2O3. However, its activity was not obviously increased when the content of nickel was over 5 wt%. The conversion ratio of normal octane and hydrogen selectivity were higher at higher reaction temperature. The single noble catalyst of palladium had better stability compared with that of platinum catalyst although their activity and selectivity were similar during the experimental reaction temperature. The prepared bimetallic catalyst consisted mainly of nickel and little noble metal of palladium supported on Al2O3. It showed that this catalyst had higher activity and selectivity, especially at lower or higher reaction temperatures compared with single nickel or palladium catalyst, and better stability. ((C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.