948 resultados para Static Nonlinearity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]This paper describes an analysis performed for facial description in static images and video streams. The still image context is first analyzed in order to decide the optimal classifier configuration for each problem: gender recognition, race classification, and glasses and moustache presence. These results are later applied to significant samples which are automatically extracted in real-time from video streams achieving promising results in the facial description of 70 individuals by means of gender, race and the presence of glasses and moustache.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent years, vibration-based structural damage identification has been subject of significant research in structural engineering. The basic idea of vibration-based methods is that damage induces mechanical properties changes that cause anomalies in the dynamic response of the structure, which measures allow to localize damage and its extension. Vibration measured data, such as frequencies and mode shapes, can be used in the Finite Element Model Updating in order to adjust structural parameters sensible at damage (e.g. Young’s Modulus). The novel aspect of this thesis is the introduction into the objective function of accurate measures of strains mode shapes, evaluated through FBG sensors. After a review of the relevant literature, the case of study, i.e. an irregular prestressed concrete beam destined for roofing of industrial structures, will be presented. The mathematical model was built through FE models, studying static and dynamic behaviour of the element. Another analytical model was developed, based on the ‘Ritz method’, in order to investigate the possible interaction between the RC beam and the steel supporting table used for testing. Experimental data, recorded through the contemporary use of different measurement techniques (optical fibers, accelerometers, LVDTs) were compared whit theoretical data, allowing to detect the best model, for which have been outlined the settings for the updating procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SCOPUS: ed.j

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: New Credit and Debit Card Chips

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing complexity of today's software, the software development process is becoming highly time and resource consuming. The increasing number of software configurations, input parameters, usage scenarios, supporting platforms, external dependencies, and versions plays an important role in expanding the costs of maintaining and repairing unforeseeable software faults. To repair software faults, developers spend considerable time in identifying the scenarios leading to those faults and root-causing the problems. While software debugging remains largely manual, it is not the case with software testing and verification. The goal of this research is to improve the software development process in general, and software debugging process in particular, by devising techniques and methods for automated software debugging, which leverage the advances in automatic test case generation and replay. In this research, novel algorithms are devised to discover faulty execution paths in programs by utilizing already existing software test cases, which can be either automatically or manually generated. The execution traces, or alternatively, the sequence covers of the failing test cases are extracted. Afterwards, commonalities between these test case sequence covers are extracted, processed, analyzed, and then presented to the developers in the form of subsequences that may be causing the fault. The hypothesis is that code sequences that are shared between a number of faulty test cases for the same reason resemble the faulty execution path, and hence, the search space for the faulty execution path can be narrowed down by using a large number of test cases. To achieve this goal, an efficient algorithm is implemented for finding common subsequences among a set of code sequence covers. Optimization techniques are devised to generate shorter and more logical sequence covers, and to select subsequences with high likelihood of containing the root cause among the set of all possible common subsequences. A hybrid static/dynamic analysis approach is designed to trace back the common subsequences from the end to the root cause. A debugging tool is created to enable developers to use the approach, and integrate it with an existing Integrated Development Environment. The tool is also integrated with the environment's program editors so that developers can benefit from both the tool suggestions, and their source code counterparts. Finally, a comparison between the developed approach and the state-of-the-art techniques shows that developers need only to inspect a small number of lines in order to find the root cause of the fault. Furthermore, experimental evaluation shows that the algorithm optimizations lead to better results in terms of both the algorithm running time and the output subsequence length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation presents the design of three high-performance successive-approximation-register (SAR) analog-to-digital converters (ADCs) using distinct digital background calibration techniques under the framework of a generalized code-domain linear equalizer. These digital calibration techniques effectively and efficiently remove the static mismatch errors in the analog-to-digital (A/D) conversion. They enable aggressive scaling of the capacitive digital-to-analog converter (DAC), which also serves as sampling capacitor, to the kT/C limit. As a result, outstanding conversion linearity, high signal-to-noise ratio (SNR), high conversion speed, robustness, superb energy efficiency, and minimal chip-area are accomplished simultaneously. The first design is a 12-bit 22.5/45-MS/s SAR ADC in 0.13-μm CMOS process. It employs a perturbation-based calibration based on the superposition property of linear systems to digitally correct the capacitor mismatch error in the weighted DAC. With 3.0-mW power dissipation at a 1.2-V power supply and a 22.5-MS/s sample rate, it achieves a 71.1-dB signal-to-noise-plus-distortion ratio (SNDR), and a 94.6-dB spurious free dynamic range (SFDR). At Nyquist frequency, the conversion figure of merit (FoM) is 50.8 fJ/conversion step, the best FoM up to date (2010) for 12-bit ADCs. The SAR ADC core occupies 0.06 mm2, while the estimated area the calibration circuits is 0.03 mm2. The second proposed digital calibration technique is a bit-wise-correlation-based digital calibration. It utilizes the statistical independence of an injected pseudo-random signal and the input signal to correct the DAC mismatch in SAR ADCs. This idea is experimentally verified in a 12-bit 37-MS/s SAR ADC fabricated in 65-nm CMOS implemented by Pingli Huang. This prototype chip achieves a 70.23-dB peak SNDR and an 81.02-dB peak SFDR, while occupying 0.12-mm2 silicon area and dissipating 9.14 mW from a 1.2-V supply with the synthesized digital calibration circuits included. The third work is an 8-bit, 600-MS/s, 10-way time-interleaved SAR ADC array fabricated in 0.13-μm CMOS process. This work employs an adaptive digital equalization approach to calibrate both intra-channel nonlinearities and inter-channel mismatch errors. The prototype chip achieves 47.4-dB SNDR, 63.6-dB SFDR, less than 0.30-LSB differential nonlinearity (DNL), and less than 0.23-LSB integral nonlinearity (INL). The ADC array occupies an active area of 1.35 mm2 and dissipates 30.3 mW, including synthesized digital calibration circuits and an on-chip dual-loop delay-locked loop (DLL) for clock generation and synchronization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present article reflects the progress of an ongoing master’s dissertation on language engineering. The main goal of the work here described, is to infer a programmer’s profile through the analysis of his source code. After such analysis the programmer shall be placed on a scale that characterizes him on his language abilities. There are several potential applications for such profiling, namely, the evaluation of a programmer’s skills and proficiency on a given language or the continuous evaluation of a student’s progress on a programming course. Throughout the course of this project and as a proof of concept, a tool that allows the automatic profiling of a Java programmer is under development. This tool is also introduced in the paper and its preliminary outcomes are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to review and augment the theory and methods of optimal experimental design. In Chapter I the scene is set by considering the possible aims of an experimenter prior to an experiment, the statistical methods one might use to achieve those aims and how experimental design might aid this procedure. It is indicated that, given a criterion for design, a priori optimal design will only be possible in certain instances and, otherwise, some form of sequential procedure would seem to be indicated. In Chapter 2 an exact experimental design problem is formulated mathematically and is compared with its continuous analogue. Motivation is provided for the solution of this continuous problem, and the remainder of the chapter concerns this problem. A necessary and sufficient condition for optimality of a design measure is given. Problems which might arise in testing this condition are discussed, in particular with respect to possible non-differentiability of the criterion function at the design being tested. Several examples are given of optimal designs which may be found analytically and which illustrate the points discussed earlier in the chapter. In Chapter 3 numerical methods of solution of the continuous optimal design problem are reviewed. A new algorithm is presented with illustrations of how it should be used in practice. It is shown that, for reasonably large sample size, continuously optimal designs may be approximated to well by an exact design. In situations where this is not satisfactory algorithms for improvement of this design are reviewed. Chapter 4 consists of a discussion of sequentially designed experiments, with regard to both the philosophies underlying, and the application of the methods of, statistical inference. In Chapter 5 we criticise constructively previous suggestions for fully sequential design procedures. Alternative suggestions are made along with conjectures as to how these might improve performance. Chapter 6 presents a simulation study, the aim of which is to investigate the conjectures of Chapter 5. The results of this study provide empirical support for these conjectures. In Chapter 7 examples are analysed. These suggest aids to sequential experimentation by means of reduction of the dimension of the design space and the possibility of experimenting semi-sequentially. Further examples are considered which stress the importance of the use of prior information in situations of this type. Finally we consider the design of experiments when semi-sequential experimentation is mandatory because of the necessity of taking batches of observations at the same time. In Chapter 8 we look at some of the assumptions which have been made and indicate what may go wrong where these assumptions no longer hold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Processamento de Linguagem Natural e Indústrias da Língua, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies mobile robotic manipulators, where one or more robot manipulator arms are integrated with a mobile robotic base. The base could be a wheeled or tracked vehicle, or it might be a multi-limbed locomotor. As robots are increasingly deployed in complex and unstructured environments, the need for mobile manipulation increases. Mobile robotic assistants have the potential to revolutionize human lives in a large variety of settings including home, industrial and outdoor environments.

Mobile Manipulation is the use or study of such mobile robots as they interact with physical objects in their environment. As compared to fixed base manipulators, mobile manipulators can take advantage of the base mechanism’s added degrees of freedom in the task planning and execution process. But their use also poses new problems in the analysis and control of base system stability, and the planning of coordinated base and arm motions. For mobile manipulators to be successfully and efficiently used, a thorough understanding of their kinematics, stability, and capabilities is required. Moreover, because mobile manipulators typically possess a large number of actuators, new and efficient methods to coordinate their large numbers of degrees of freedom are needed to make them practically deployable. This thesis develops new kinematic and stability analyses of mobile manipulation, and new algorithms to efficiently plan their motions.

I first develop detailed and novel descriptions of the kinematics governing the operation of multi- limbed legged robots working in the presence of gravity, and whose limbs may also be simultaneously used for manipulation. The fundamental stance constraint that arises from simple assumptions about friction and the ground contact and feasible motions is derived. Thereafter, a local relationship between joint motions and motions of the robot abdomen and reaching limbs is developed. Baseeon these relationships, one can define and analyze local kinematic qualities including limberness, wrench resistance and local dexterity. While previous researchers have noted the similarity between multi- fingered grasping and quasi-static manipulation, this thesis makes explicit connections between these two problems.

The kinematic expressions form the basis for a local motion planning problem that that determines the joint motions to achieve several simultaneous objectives while maintaining stance stability in the presence of gravity. This problem is translated into a convex quadratic program entitled the balanced priority solution, whose existence and uniqueness properties are developed. This problem is related in spirit to the classical redundancy resoxlution and task-priority approaches. With some simple modifications, this local planning and optimization problem can be extended to handle a large variety of goals and constraints that arise in mobile-manipulation. This local planning problem applies readily to other mobile bases including wheeled and articulated bases. This thesis describes the use of the local planning techniques to generate global plans, as well as for use within a feedback loop. The work in this thesis is motivated in part by many practical tasks involving the Surrogate and RoboSimian robots at NASA/JPL, and a large number of examples involving the two robots, both real and simulated, are provided.

Finally, this thesis provides an analysis of simultaneous force and motion control for multi- limbed legged robots. Starting with a classical linear stiffness relationship, an analysis of this problem for multiple point contacts is described. The local velocity planning problem is extended to include generation of forces, as well as to maintain stability using force-feedback. This thesis also provides a concise, novel definition of static stability, and proves some conditions under which it is satisfied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a review on radio-over-fiber (RoF) technology is conducted to support the exploding growth of mobile broadband. An RoF system will provide a platform for distributed antenna system (DAS) as a fronthaul of long term evolution (LTE) technology. A higher splitting ratio from a macrocell is required to support large DAS topology, hence higher optical launch power (OLP) is the right approach. However, high OLP generates undesired nonlinearities, namely the stimulated Brillouin scattering (SBS). Three different aspects of solving the SBS process are covered in this paper, where the solutions ultimately provided an additional 4 dB link budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fishing trials with monofilament gill nets and longlines using small hooks were carried out in Algarve waters (southern Portugal) over a one-year period. Four hook sizes of "Mustad" brand, round bent, flatted sea hooks (Quality 2316 DT, numbers 15, 13, 12 and 11) and four mesh sizes of 25, 30, 35 and 40 mm (bar length) monofilament gill nets were used. Commercially valuable sea breams dominated the longline catches while small pelagics were relatively more important in the gill nets. Significant differences in the catch size frequency distributions of the two gears were found for all the most important species caught by both gears (Boops boops, Diplodus bellottii, Diplodus vulgaris, Pagellus acarne, Pagellus erythrinus, Spondyiosoma cantharus, Scomber japonicus and Scorpaena notata), with longlines catching larger fish and a wider size range than nets. Whereas longline catch size frequency distributions for most species for the different hook sizes were generally highly overlapped, suggesting little or no differences in size selectivity, gill net catch size frequency distributions clearly showed size selection. A variety of models were fitted to the gill net and hook data using the SELECT method, while the parameters of the logistic model were estimated by maximum likelihood for the longline data. The bi-normal model gave the best fits for most of the species caught with gill nets, while the logistic model adequately described hook selectivity. The results of this study show that the two static gears compete for many of the same species and have different impacts in terms of catch composition and size selectivity. This information will I;e useful for the improved management of these small-scale fisheries in which many different gears compete for scarce resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we explore three methods for the geometrico-static modelling of continuum parallel robots. Inspired by biological trunks, tentacles and snakes, continuum robot designs can reach confined spaces, manipulate objects in complex environments and conform to curvilinear paths in space. In addition, parallel continuum manipulators have the potential to inherit some of the compactness and compliance of continuum robots while retaining some of the precision, stability and strength of rigid-links parallel robots. Subsequently, the foundation of our work is performed on slender beam by applying the Cosserat rod theory, appropriate to model continuum robots. After that, three different approaches are developed on a case study of a planar parallel continuum robot constituted of two connected flexible links. We solve the forward and inverse geometrico-static problem namely by using (a) shooting methods to obtain a numerical solution, (b) an elliptic method to find a quasi-analytical solution, and (c) the Corde model to perform further model analysis. The performances of each of the studied methods are evaluated and their limits are highlighted. This thesis is divided as follows. Chapter one gives the introduction on the field of the continuum robotics and introduce the parallel continuum robots that is studied in this work. Chapter two describe the geometrico-static problem and gives the mathematical description of this problem. Chapter three explains the numerical approach with the shooting method and chapter four introduce the quasi-analytical solution. Then, Chapter five introduce the analytic method inspired by the Corde model and chapter six gives the conclusions of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior parietal lobule (SPL) of macaques is classically described as an associative cortex implicated in visuospatial perception, planning and control of reaching and grasping movements (De Vitis et al., 2019; Galletti et al., 2003, 2018, 2022; Fattori et al., 2017; Hadjidimitrakis et al., 2015). These processes are the result of the integration of signals related to different sensory modalities. During a goal-directed action, eye and limb information are combined to ensure that the hand is transported at the gazed target location and the arm is maintained steady in the final position. The SPL areas V6A, PEc and PE contain cells sensitive to the direction of gaze and limb position but less is known about the degree of independent encoding of these signals. In this thesis, we evaluated the influence of eye and arm position information upon single neuron activity of areas V6A, PEc and PE during the holding period after the execution of arm reaching movement, when the gaze and hand are both still at the reach target. Two male macaques (Macaca fascicularis) performed a reaching task while single unit activity was recorded from areas V6A, PEc and PE. We found that neurons in all these areas were modulated by eye and static arm positions with a joint encoding of gaze and somatosensory signals in V6A and PEc and a mostly separate processing of the two signals in PE. The elaboration of this information reflects the functional gradient found in the SPL with the caudal sector characterized by visuo-somatic properties in comparison to the rostral sector dominated by somatosensory signals. This evidence well agree also with the recent reallocation of areas V6A and PEc in Brodmann’s area 7 depending on their similar structural and functional features with respect to PE belonging to Brodmann’s area 5 (Gamberini et al., 2020).