979 resultados para Specialties, Dental
Resumo:
Objectives: This in vitro study assessed the effect of an experimental 4%TiF4 varnish on enamel erosion.Methods: Sixty bovine enamel blocks were randomly allocated to each type of varnish:Duraphat((R)) -D (NaF, 2.26%F), Duofluorid((R))-F(NaF, 2.71% F), TiF4-T(2.45%F) and no-fluoride-P. After application of the varnishes, the blocks were subjected to six sequential pH cycles (cola drink for 10 min and artificial saliva for 50 min, each) per day, during 4 days. After the pH cycles, the blocks were maintained in artificial saliva for 18 h. Enamel alterations were determined in the 2nd and 4th days, using profilometry (wear) and microhardness (%SMHC) tests. Data were tested using ANOVA and Tukey's tests (p < 0.05).Results: the mean %SMHC (+/- S.D.) at the 2nd and 4th day was, respectively, D (-77.26 +/- 5.04(a) and -88.59 +/- 5.11(A)), F (-76.79 +/- 7.82(a) and -88.78 +/- 6.10(A)), T(-88.28 +/- 3.19(b) and -92.04 +/- 2.54(A,B)) and P (-87.96 +/- 2.23(b) and -94.15 +/- 1.14(B)). The mean wear (mu m +/- S.D.) at the 2nd and 4th day was, respectively, D (3.16 +/- 0.32(a) and 7.56 +/- 0.90(A)), F(3.35 +/- 0.78(a,b) and 7.92 +/- 0.98(A)), T (3.81 +/- 0.43(b) and 7.69 +/- 0.76(A)) and P (3.43 +/- 1.13(a,b) and 7.31 +/- 0.53(A)).Conclusions: the NaF varnishes reduced the softening, but had no effect on the reduction of the wear. The TiF4 varnish was not able to reduce the softening and wear. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Titanium alloys are hoped to be used much more for applications as implant materials in the medical and dental fields because of their basic properties, such as biocompatibility, corrosion resistance and specific strength compared with other metallic implant materials. Thus, the Ti-6Al-7Nb alloy that has recently been developed for biomedical use, that is, primarily developed for orthopaedic use, is to be studied in this paper, for application in dental implants. The biocompatibility test in vivo was carried out in dogs and the osseointegration was verified through histological analysis of the samples of the Ti-6Al-7Nb alloy with and without hydroxyapatite coating that were inserted in the alveoli. Within the controlled conditions the samples did not show any toxic effects on the cells. (C) 2001 Kluwer Academic Publishers.
Resumo:
The purpose of this study was to analyze crown fractures and crown-root fractures due to dentoalveolar trauma, treated in the Integrated Clinic comprehensive dental care at Aracatuba School of Dentistry (UNESP), from January 1992 to July 2002. The data were obtained from files of trauma cases. on the analysis period, 293 patients had crown fractures or crown-root fractures, in 605 teeth. Sixty-nine percent were males and 31% were females. Adolescents between 11 and 18 years old were the most prevalent group (41.6%) and the maxillary arch was the most commonly traumatized (83%). The most commonly affected tooth was the maxillary central incisor (58.3%). The most frequent causes were falls from bicycles (30.8%). It was concluded that the reality of the local service is similar to the published data.
Resumo:
This study evaluated the Knoop hardness of one resin cement (dual-cure mode or light-cure mode) when illuminated directly or through restorative materials-ceramic (HeraCeram) or composite (Artglass)-by two light curing units. Light curing was carried out using a conventional quartz tungsten halogen (QTH) light source (XL2500) for 40 s, and a light emitting diodes (LED) light source (Ultrablue Is) for 40 s. Bovine incisors had their buccal faces flattened and hybridised. on these surfaces, a mould was seated and filled with cement. A disc of the veneering material (1.5 mm thickness) was positioned over this set for light curing. After storage (24 h/37 degrees C), samples (n = 10) were sectioned for hardness (KHN) measurements. Data were submitted to ANOVA and to Tukey's test (alpha = 0.05). In general, light curing with LED resulted in higher hardness values than QTH. Distinct cement behaviour was observed with different veneering material in association with different light curing units (LCUs). (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Due to their excellent aesthetics, photopolymers have been extensively used in several dentistry applications. However, several problems are reported, e.g. low mechanical and abrasion resistance, shrinkage during polymerization, etc. Properties of the final restorations are intrinsically related to the polymerization stage, which can be conveniently studied by photocalorimetry. In the present work the polymerization reaction and the filler content of different photocurable commercial dental methacrylate-based composites were studied by means of photocalorimetry and thermogravimetry, respectively. The results show that the values of curing rate, the heat of polymerization and the filler content vary significantly from one composite to another.