924 resultados para Soybean oil waste


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of silica supported, magnetite nanoparticle catalysts was synthesized and investigated for continuous flow acetic acid ketonization as a model pyrolysis bio-oil upgrading reaction. Physicochemical properties of Fe3O4/SiO2 catalysts were characterized by HRTEM, XAS, XPS, DRIFTS, TGA and porosimetry. Acid site densities were inversely proportional to Fe3O4 particle size, although acid strength and Lewis character were size invariant, and correlated with the specific activity for vapor phase acetic ketonization to acetone. A constant activation energy (~110 kJ.mol-1), turnover frequency (~13 h-1) and selectivity to acetone of 60 % were observed for ketonization across the catalyst series, implicating Fe3O4 as the principal active component of Red Mud waste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TESLA project (Transfering Energy Save Laid on Agroindustry) financed by the European Commission, had the main goals of evaluating the energy consumption and to identify the best available practices to improve energy efficiency in key agro-food sectors, such as the olive oil mills. A general analysis of energy consumptions allowed identifying the partition between electrical and thermal energy (approximately 50%) and the production processes responsible for the higher energy consumptions, as being the in the mill and paste preparation and the phases separation. Some measures for reducing energy waste and for improving energy efficiency were identified and the impact was evaluated by using the TESLA tool developed by Circe and available at the TESLA website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead is present everywhere in the environment and has been defined as one of the greatest threats to the human health. In this paper, attempts have been made to study a way of recycling the lead produced from waste usage and disposed of in such a way as to avoid degrading the surrounding environment. In order to contain the waste, recycled asphalt material is mixed with the lead and then heated with microwave energy. This is an attempt to solidify and reduce the lead contaminants and use the final product as sub-base material in road pavement construction. The microwave heating of the specimens is carried out with 30%, 50%, 80% and 100% of power at 800W. The optimum power mode is used to compare with the conventional heating of asphalt with sulfur additive. The results are characterized by compact density, permeability, and subjected to toxicity test with regards to lead concentration. A mechanical test to evaluate the stability is also performed on the three methods of solidification and to prove that microwave zapping method allow to convert into an environmentally stable material for recycling without having to be deposited in a landfill site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complete change of career forces a seismic shift in every aspect of your life. From day one, you have to face the loss of long held beliefs, behaviours, the known world of self, and security. We came from professions that themselves are poles apart, and many of the challenges we faced entering the profession were the same: juggling full-time work, part time study, and family commitmemts, taking a pay cut, and loss of social life. But over a short period of time we both transitioned to our new profession successfully. so what make our successful transition possible?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Regenerating Construction Project for the CRC for Construction Innovation aims to assist in the delivery of demonstrably superior ‘green’ buildings. Components of the project address eco-efficient redesign, achieving a smaller ecological footprint, enhancing indoor environment and minimising waste in design and construction. The refurbishment of Council House 1 for Melbourne City Council provides an opportunity to develop and demonstrate tools that will be of use for commercial building refurbishment generally. It is hoped that the refurbishment will act as an exemplar project to demonstrate environmentally friendly possibilities for office building refurbishment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refurbishment of commercial buildings is growing as a percentage of overall construction activity in Australia and this trend is likely to continue. Refurbishment generates a significant waste stream much of which is potentially reusable or recyclable. Despite this potential, several factors are known to unnecessarily inhibit the amount of recycling that actually occurs on renovation projects. In order to identify the reasons causing this reluctance, a process of project monitoring and expert consultation was carried out. Twenty three experts experienced in commercial refurbishment projects and three waste contractors with specific knowledge of construction waste were interviewed. Records of receipts for waste from a case study project reveal three principal factors inhibiting recycling rates: the presence of asbestos in the building; the continued occupation of the building during construction; and the breaking up of a large project into small separate contracts thereby reducing economies of scale. To ascertain the potential for improvement, current rates for reuse and recycling of materials were collected from the experts. The results revealed a considerable variation in practice between companies and indicated key areas which should be targeted to improve performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renovation and refurbishment of the existing commercial building stock is a growing area of total construction activity and a significant generator of waste sent to landfill in Australia. A written waste management plan (WMP) is a widespread regulatory requirement for commercial office redevelopment projects. There is little evidence, however, that WMPs actually increase the quantity of waste that is ultimately diverted from landfill. Some reports indicate an absence of any formal verification or monitoring process by regulators to assess the efficacy of the plans. In order to gauge the extent of the problem a survey was conducted of twenty four consultants and practitioners involved in commercial office building refurbishment projects to determine the state of current practice with regard to WMPs and to elicit suggestions with regard to ways of making the process more effective. Considerable variation in commitment to recycling policies was encountered indicating a need to revisit waste minimisation practices if the environmental performance of refurbishment projects is to be improved.