996 resultados para Southwestern Atlantic Ocean
Resumo:
We use an X-ray fluorescence (XRF) Core Scanner to obtain records of elemental concentrations in sediment cores from Ocean Drilling Program (ODP) Leg 171B, Site 1052 (Blake Nose, Atlantic margin of northern Florida).This record spans the Middle to Late Eocene, as indicated by bio- and magnetostratigraphy, and displays cyclicity that can be attributed to the orbital forcing of a combination of climate, ocean circulation, or productivity. We use the XRF counts of iron and calcium as a proxy of the relative contribution from calcium carbonate and terrestrial material to construct a new composite depth record. This new composite depth record provides the basis to extend the astronomically calibrated geological time scale into the Middle Eocene and results in revised estimates for the age and duration of magnetochrons C16 through C18. In addition, we find an apparent change in the dominance of orbitally driven changes in obliquity and climatic precession at around 36.7 Ma on our new time scale. Long term amplitude modulation patterns of eccentricity and obliquity in the data do not seem to match the current astronomical model any more, suggesting the possibility of new constraints on astronomical calculations.
Resumo:
High-resolution planktonic and benthic stable isotope records from Ocean Drilling Program Site 1087 off southeast Africa provide the basis for a detailed study of glacial-interglacial (G-IG) cycles during the last 500 k.y. This site is located in the Southern Cape Basin at the boundary of the coastal upwelling of Benguela and close to the gateway between the South Atlantic and the Indian Oceans. It therefore monitors variations of the hydrological fronts associated with the upwelling system and the Atlantic-Indian Ocean interconnections, in relation to global climate change. The coldest period of the last 500 k.y. corresponds to marine isotope Stage (MIS) 12, when surface water temperature was 4°C lower than during the last glacial maximum (LGM) as recorded by the surface-dwelling foraminifer Globigerinoides ruber. The warmest periods occurred during MISs 5 and 11, a situation slightly different to that observed at Site 704, which is close to the Polar Front Zone, where there is no significant difference between the interglacial stages for the past 450 k.y., except the long period of warmth during MIS 11. The planktonic and benthic carbon isotope records do not follow the G-IG cycles but show large oscillations related to major changes in the productivity regime. The largest positive 13C excursion between 260 and 425 ka coincides with the global mid-Brunhes event of carbonate productivity. The oxygen and carbon isotopic gradients between surface and deep waters display long-term changes superimposed on rapid and high-frequency fluctuations that do not follow the regular G-IG pattern; these gradients indicate modifications of the temperature, salinity, and productivity gradients due to changes in the thermocline depth, the position of the hydrological fronts, and the strength of the Benguela Current.
Resumo:
Oxygen and carbon isotope ratios in benthic foraminifers have been determined at 10 cm intervals through the top 59 m of DSDP Hole 552A. This provides a glacial record of remarkable resolution for the late Pliocene and Pleistocene. The major glacial event which marked the onset of Pleistocene-like glacial-interglacial alternations was at about 2.4 m.y. ago. These very high-resolution data do not support the notion of significant Northern Hemisphere glaciation between 3.2 and 2.4 m.y. ago.
Resumo:
The data have been extracted and compiled from various sources but mainly from the ICES data base. The ICES data are from catch databases downloaded from the ICES website on 2014-01-14. These data are resolved by ICES area, country and year. During inspection of these data, it was noted that Norwegian data for years before 1950 had not been entered into the catch database on the ICES website. ICES has been notified of this omission by B. R. MacKenzie. The Norwegian data from ICES Bulletins. Statistiques has been added. Additional historical bluefin tuna catch data from other fishery reports and sources have been included in the data file for years preceding those when countries started reported their landings officially to ICES. These additional data have been reported in the literature previously (MacKenzie and Myers 2007, Fisheries Research).
Resumo:
Stratigraphic, faunal and isotopic analyses of the Maastrichtian at DSDP sites 525A and 21 in the South Atlantic reveal a planktic foraminiferal fauna characterized by two major events, an early late Maastrichtian diversification and end-Maastrichtian mass extinction. Both events are accompanied by major changes in climate and productivity. The diversification event which occurred in two steps between 70.5 and 69.1 Ma increased species richness by a total of 43% and coincided with the onset of major cooling in surface and bottom waters and increased surface productivity. The onset of the terminal decline in Maastrichtian species richness began at 67.5 Ma and the first significant decline in surface productivity occurred at 66.2 Ma, coincident maximum cooling to 13°C in surface waters and the reduction of the surface-to-deep temperature gradient to less than 5°C. Major climatic and moderate productivity changes mark the mass extinction and the last 500 kyr of the Maastrichtian. Between 200 and 400 kyr before the K-T boundary surface and deep waters warmed rapidly by 3-4°C and cooled again during the last 100 kyr of the Maastrichtian. Surface productivity decreased only moderately across the K-T boundary. Species richness began to decline during the late Maastrichtian cooling and by K-T boundary time, the mass extinction had claimed 66% of the species. Viewed within the context of Maastrichtian climate and productivity changes, the K-T mass extinction could have resulted from extreme environmental stress even without the addition of an extraterrestrial impact.