929 resultados para Solar radiation pressure
Resumo:
Este trabalho introduz a teoria da instrumentação virtual descrevendo os principais componentes desta. É detalhada a implementação de um instrumento virtual e uma base de dados associada que permitem obter uma estimativa de variáveis ambientais para qualquer ponto do globo e qualquer altura do ano. Este instrumento - Environment simulator – permite fornecer dados ambientais necessários a simulação da radiação solar. Para explicar a implementação da plataforma de apoio introduzem-se noções relativas à radiação solar, à relação entre o planeta Terra e o sol. É considerada a radiação solar espectral bem como os principais componentes óticos atmosféricos que com ela interagem. Apresentam-se formulações e aproximações dos coeficientes de extinção e dispersão na atmosfera que levam ao cálculo da radiação solar espectral direta, difusa e global. Por fim, validam-se os resultados através da comparação com valores registados durante a campanha de observações ALEX2014.
Resumo:
Solar radiation data is crucial for the design of energy systems based on the solar resource. Since diffuse radiation measurements are not always available in the archive data series, either due to the inexistence of measuring equipment, shading device misplacement or missing data, models to generate these data are needed. In this work, one year of hourly and daily horizontal solar global and diffuse irradiation measurements in Évora are used to establish a new relation between the diffuse radiation and the clearness index. The proposed model includes a fitting parameter, which was adjusted through a simple optimization procedure to minimize the Least Square Error as compared to measurements. A comparison against several other fitting models presented in the literature was also carried out using the Root Mean Square Error as statistical indicator, and it was found that the present model is more accurate than the previous fitting models for the diffuse radiation data in Évora.
Cloud parameter retrievals from Meteosat and their effects on the shortwave radiation at the surface
Resumo:
A method based on Spinning Enhanced Visible and Infrared Imager (SEVIRI) measured reflectance at 0.6 and 3.9 µm is used to retrieve the cloud optical thickness (COT) and cloud effective radius (re) over the Iberian Peninsula. A sensitivity analysis of simulated retrievals to the input parameters demonstrates that the cloud top height is an important factor in satellite retrievals of COT and re with uncertainties around 10% for small values of COT and re; for water clouds these uncertainties can be greater than 10% for small values of re. The uncertainties found related with geometries are around 3%. The COT and re are assessed using well-known satellite cloud products, showing that the method used characterize the cloud field with more than 80% (82%) of the absolute differences between COT (re) mean values of all clouds (water plus ice clouds) centred in the range from ±10 (±10 µm), with absolute bias lower than 2 (2 μm) for COT (re) and root mean square error values lower than 10 (8 μm) for COT (re). The cloud water path (CWP), derived from satellite retrievals, and the shortwave cloud radiative effect at the surface (CRESW) are related for high fractional sky covers (Fsc >0.8), showing that water clouds produce more negative CRESW than ice clouds. The COT retrieved was also related to the cloud modification factor, which exhibits reductions and enhancements of the surface SW radiation of the order of 80% and 30%, respectively, for COT values lower than 10. A selected case study shows, using a ground-based sky camera that some situations classified by the satellite with high Fsc values correspond to situations of broken clouds where the enhancements actually occur. For this case study, a closure between the liquid water path (LWP) obtained from the satellite retrievals and the same cloud quantity obtained from ground-based microwave measurements was performed showing a good agreement between both LWP data set values.
Resumo:
Lo que se pretende con este trabajo es probar el método de Swartman y Ogunlade (1966), en las aéreas geográficas de Limón, Buenos Aires, Fabio Baudrit (Alajuela), Nicoya y Puntarenas, donde existen datos de brillo solar, humedad relativa y radiación solar global diaria media mensual. Se prueba la validez de este método para estas estaciones en estudio, con un valor aceptable de ± 10% de error en la mayoría de los casos. En ausencia de aparatos que miden directamente la radiación solar global, se recomienda utilizar este método, pues únicamente requiere datos de humedad relativa y brillo solar, que se miden directamente en casi todas las estaciones meteorológicas del país. SUMMARY This article attempts to verify the method used by Swartman and Ogunlade (1966) in the areas of Limón, Buenos Aires, Fabio Baudrit (Alajuela), Nicoya and Puntarenas, where data exist concerning solar brilliance, relative humidity and daily global solar radiation based on monthly averages. The validity of this method is proved in reference to the above mentioned study sites, with an acceptable error factor of ± 10% in the majority of the cases. The usage of this method is recommended in the absence of apparatus that measure directly the global solar radiation, because you only need data concerning relative humidity and solar brilliance; data that is directly collected in all of the meteorogical stations located in Costa Rica. RESUME Le but de ce travail est la probation de la méthode de Swartman et Ogunlade (1966), en l’appliquant dans des aires géographiques tant diverses comme Limón, Buenos Aires, Fabio Baudrit (Alajuela), Nicoya et Puntarenas ; c'est-à-dire là où existe des mesures de la durée de l’ensoleillement, de l’humidité relative et de la moyenne mensuelle de la radiation solaire globale quotidienne. Le test de cette méthode, para ces stations donne une erreur relative de 10% dans la plupart de cas. Quand on manque d’appareils pour la mesure de la radiation solaire globale, on recommande l’usage de cette méthode, puisqu’elle se base Our les registres d’humidité relative et d’heures d’ensoleillement mesurées que toutes les stations météoritiques du pays.
Resumo:
Values of ultraviolet global solar radiation were measured with an ultraviolet radiometer and also predicted with an atmospheric spectral model. The values obtained with the atmospheric spectral model, which is physically based, were analyzed and compared with the experimental values measured in situ. The measurements were performed for different zenith angles under clear skies conditions in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparisons between the measured and predicted values gave satisfactory results.
Resumo:
Knowledge of direct and diffuse solar radiation in the area is vital importance for the use of solar energy, since it is a prerequesite information for the assessment and design of solar energy system. The work presented here focus on calculation and plotting of contours values of direct and diffuse solar radiation maps based on sixty two scattered radiometric stations nation wide. In the plotting of these contours experimental and predicted values are used, these are compared with the period of dry and rainy season into the six main climate regions of Costa Rica: Central Valley, North Pacific, Central Pacific, South Pacific, North Zone and Caribbean Region. The observed daily mean levels of direct solar radiation oscillate between 6.1 and 10.1 MJ/m2 with higher values in the North Pacific, western part of the Central Valley and in the tops of the highest mountains. The lowest values agree with the North Zone and the Caribbean Region. The highest values of diffuse solar radiation agree with the North Zone and the South Pacific. It is observed an increase of 40% of the direct radiation during dry season months.
Resumo:
The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of global warming on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since all building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. Based on a review of the existing weather data generation models, this paper presents an effective method to generate approximate future hourly weather data suitable for the study of the impact of global warming. Depending on the level of information available for the prediction of future weather condition, it is shown that either the method of retaining to current level, constant offset method or diurnal modelling method may be used to generate the future hourly variation of an individual weather parameter. An example of the application of this method to the different global warming scenarios in Australia is presented. Since there is no reliable projection of possible change in air humidity, solar radiation or wind characters, as a first approximation, these parameters have been assumed to remain at the current level. A sensitivity test of their impact on the building energy performance shows that there is generally a good linear relationship between building cooling load and the changes of weather variables of solar radiation, relative humidity or wind speed.
Resumo:
The effective daylighting of multistorey commercial building interiors poses an interesting problem for designers in Australia’s tropical and subtropical context. Given that a building exterior receives adequate sun and skylight as dictated by location-specific factors such as weather, siting and external obstructions; then the availability of daylight throughout its interior is dependant on certain building characteristics: the distance from a window façade (room depth), ceiling or window head height, window size and the visible transmittance of daylighting apertures. The daylighting of general stock, multistorey commercial buildings is made difficult by their design limitations with respect to some of these characteristics. The admission of daylight to these interiors is usually exclusively by vertical windows. Using conventional glazing, such windows can only admit sun and skylight to a depth of approximately 2 times the window height. This penetration depth is typically much less than the depth of the office interiors, so that core areas of these buildings receive little or no daylight. This issue is particularly relevant where deep, open plan office layouts prevail. The resulting interior daylight pattern is a relatively narrow perimeter zone bathed in (sometimes too intense) light, contrasted with a poorly daylit core zone. The broad luminance range this may present to a building occupant’s visual field can be a source of discomfort glare. Furthermore, the need in most tropical and subtropical regions to restrict solar heat gains to building interiors for much of the year has resulted in the widespread use of heavily tinted or reflective glazing on commercial building façades. This strategy reduces the amount of solar radiation admitted to the interior, thereby decreasing daylight levels proportionately throughout. However this technique does little to improve the way light is distributed throughout the office space. Where clear skies dominate weather conditions, at different times of day or year direct sunlight may pass unobstructed through vertical windows causing disability or discomfort glare for building occupants and as such, its admission to an interior must be appropriately controlled. Any daylighting system to be applied to multistorey commercial buildings must consider these design obstacles, and attempt to improve the distribution of daylight throughout these deep, sidelit office spaces without causing glare conditions. The research described in this thesis delineates first the design optimisation and then the actual prototyping and manufacture process of a daylighting device to be applied to such multistorey buildings in tropical and subtropical environments.
Resumo:
This research discusses some of the issues encountered while developing a set of WGEN parameters for Chile and advice for others interested in developing WGEN parameters for arid climates. The WGEN program is a commonly used and a valuable research tool; however, it has specific limitations in arid climates that need careful consideration. These limitations are analysed in the context of generating a set of WGEN parameters for Chile. Fourteen to 26 years of precipitation data are used to calculate precipitation parameters for 18 locations in Chile, and 3–8 years of temperature and solar radiation data are analysed to generate parameters for seven of these locations. Results indicate that weather generation parameters in arid regions are sensitive to erroneous or missing precipitation data. Research shows that the WGEN-estimated gamma distribution shape parameter (α) for daily precipitation in arid zones will tend to cluster around discrete values of 0 or 1, masking the high sensitivity of these parameters to additional data. Rather than focus on the length in years when assessing the adequacy of a data record for estimation of precipitation parameters, researchers should focus on the number of wet days in dry months in a data set. Analysis of the WGEN routines for the estimation of temperature and solar radiation parameters indicates that errors can occur when individual ‘months’ have fewer than two wet days in the data set. Recommendations are provided to improve methods for estimation of WGEN parameters in arid climates.
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Resumo:
The interaction and relationship between the global warming and the thermal performance buildings are dynamic in nature. In order to model and understand this behavior, different approaches, including keeping weather variable unchanged, morphing approach and diurnal modelling method, have been used to project and generate future weather data. Among these approaches, various assumptions on the change of solar radiation, air humidity and/or wind characteristics may be adopted. In this paper, an example to illustrate the generation of future weather data for the different global warming scenarios in Australia is presented. The sensitivity of building cooling loads to the possible changes of assumed values used in the future weather data generation is investigated. It is shown that with ± 10% change of the proposed future values for solar radiation, air humidity or wind characteristics, the corresponding change in the cooling load of the modeled sample office building at different Australian capital cities would not exceed 6%, 4% and 1.5% respectively. It is also found that with ±10% changes on the proposed weather variables for both the 2070-high future scenario and the current weather scenario, the corresponding change in the cooling loads at different locations may be weaker (up to 2% difference in Hobart for ±10% change in global solar radiation), similar (less than 0.6%) difference in Hobart for ±10% change in wind speed), or stronger (up to 1.6% difference in Hobart for ±10% change in relative humidity) in the 2070-high future scenario than in the current weather scenario.
Resumo:
An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).