997 resultados para Small grains
Resumo:
Digital Image
Resumo:
Postwar Version of F 39343
Resumo:
Adenoviral gene therapy is an experimental approach to cancer refractory to standard cancer therapies. Adenoviruses can be utilized as vectors to deliver therapeutic transgenes into cancer cells, while gene therapy with oncolytic adenoviruses exploits the lytic potential of viruses to kill tumor cells. Although adenoviruses demonstrate several advantages over other vectors - such as the unparalleled transduction efficacy and natural tropism to a wide range of tissues - the gene transfer efficacy to cancer cells has been limited, consequently restricting the therapeutic effect. There are, however, several approaches to circumvent this problem. We utilized different modified adenoviruses to obtain information on adenovirus tropism towards non-small cell lung cancer (NSCLC) cells. To enhance therapeutic outcome, oncolytic adenoviruses were evaluated. Further, to enhance gene delivery to tumors, we used mesenchymal stem cells (MSCs) as carriers. To improve adenovirus specificity, we investigated whether widely used cyclooxygenase 2 (Cox-2) promoter is induced by adenovirus infection in nontarget cells and whether selectivity can be retained by the 3 untranslated region (UTR) AU-rich elements. In addition, we investigated whether switching adenovirus fiber can retain gene delivery in the presence of neutralizing antibodies. Our results show that adenoviruses, whose capsids were modified with arginine-glycine-aspartatic acid (RGD-4C), the serotype 3 knob, or polylysins displayed enhanced gene transfer into NSCLC cell lines and fresh clinical specimens from patients. The therapeutic efficacy was further improved by using respective oncolytic adenoviruses with isogenic 24bp deletion in the E1A gene. Cox-2 promoter was also shown to be induced in normal and tumor cells following adenovirus infection, but utilization of 3 UTR elements can increase the tumor specificity of the promoter. Further, the results suggested that use of MSCs could enhance the bioavailability and delivery of adenoviruses into human tumors, although cells had no tumor tropism per se. Finally, we demonstrated that changing adenovirus fiber can allow virus to escape from existing neutralizing antibodies when delivered systemically. In conclusion, these results reveal that adenovirus gene transfer and specificity can be increased by using modified adenoviruses and MSCs as carriers, and fiber modifications simultaneously decrease the effect of neutralizing antibodies. This promising data suggest that these approaches could translate into clinical testing in patients with NSCLC refractory to current modalities.
Resumo:
Small spindleless veneer lathe technology was used to produce veneer sheets as an alternative processing option to optimise the use of small log plantation resource. Thinned (300 spha) and unthinned control (1000 spha) plantings of 10.5-year-old Corymbia citriodora ssp. variegata (CCV) and E. dunnii (Dunn’s white gum) grown in two contrasting sites from climatic regions with large annual rainfall differences were studied. Overall veneer gross recoveries ranged from 50% to 70%, which were up to 3 times higher than typical sawn green-off saw recoveries from small plantation hardwood logs of similar diameter. Major limiting factors preventing veneer from meeting higher grades were the presence of kino defects and encased knots. Splits in E. dunnii veneer also contributed to reduced grade quality. Differences between two thinning treatments for veneer properties and grade recovery were generally small. There was significant evidence of site and species differences on veneer quality. The good quality site with higher rainfall in northern New South Wales produced denser and stiffer veneers with higher grade recoveries. CCV is a superior structural veneer species with high wood density and hardness as well as very good veneer stiffness exceeding 15,000 MPa but Dunn’s white gum has also demonstrated good potential as a useful structural plywood resource. Results indicate that relatively high veneer recoveries were achieved for the sub-tropical plantation hardwoods combined with very superior mechanical properties which suggest that veneer production have suitable attributes for a range of engineered wood products including plywood and laminated veneer lumber.
Resumo:
Small-angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) with contrast matching techniques (Melnichenko and others, 2012) were used to investigate size distribution and gas accessibility in pores in an approximately 10.6 cm long Mississippian Barnett Shale butt core from the Fort Worth Basin, Texas, USA. SANS and USANS measurements record scattering from all pores, both open and closed, in the size range 10nm - ~10 μ. The techniques can also be used to determine the material that contains pores and the number of pores as a function of size. By injecting deuterated methane gas (CD4) at contrast matching pressure it is possible to distinguish which pores are accessible, or open, to fluids and which ones are not.
Resumo:
Conceptual advances in the field of membrane transport have, in the main, utilized artificial membranes, both planar and vesicular. Systems of biological interest,viz., cells and organelles, resemble vesicles in size and geometry. Methods are, therefore, required to extend the results obtained with planar membranes to liposome systems. In this report we present an analysis of a fluorescence technique, using the divalent cation probe chlortetracycline, in small, unilamellar vesicles, for the study of divalent cation fluxes. An ion carrier (X537 A) and a pore former (alamethicin) have been studied. The rate of rise of fluorescence signal and the transmembrane ion gradient have been related to transmembrane current and potential, respectively. A second power dependence of ion conduction-including the electrically silent portion thereof — on X537 A concentration, has been observed. An exponential dependence of ldquocurrentrdquo on ldquotransmembrane potentialrdquo in the case of alamethicin is also confirmed. Possible errors in the technique are discussed.
Resumo:
The routine use of proton NMR for the visualization of enantiomers, aligned in the chiral liquid crystal solvent poly-γ-benzyl-l-glutamate (PBLG), is restricted due to severe loss of resolution arising from large number of pair wise interaction of nuclear spins. In the present study, we have designed two experimental techniques for their visualization utilizing the natural abundance 13C edited selective refocusing of single quantum (CH-SERF) and double quantum (CH-DQSERF) coherences. The methods achieve chiral discrimination and aid in the simultaneous determination of homonuclear couplings between active and passive spins and heteronuclear couplings between the excited protons and the participating 13C spin. The CH-SERF also overcomes the problem of overlap of central transitions of the methyl selective refocusing (SERF) experiment resulting in better chiral discrimination. Theoretical description of the evolution of magnetization in both the sequences has been discussed using polarization operator formalism.
Resumo:
The effect of partially replacing rolled barley (86.6% of control diet) with 20% wheat dried distillers grains plus solubles (DDGS), 40% wheat DDGS, 20% corn DDGS, or 40% corn DDGS (dietary DM basis) on rumen fluid fatty acid (FA) composition and some rumen bacterial communities was evaluated using 100 steers (20 per treatment). Wheat DDGS increased the 11t-to 10t-18:1 ratio (P < 0.05) in rumen fluid and there was evidence that the conversion of trans-18:1 to 18:0 was reduced in the control and wheat DDGS diets but not in the corn DDGS diet. Bacterial community profiles obtained using denaturing gradient gel electrophoresis and evaluated by Pearson correlation similarity matrices were not consistent for diet and, therefore, these could not be linked to different specific rumen FA. This inconsistency may be related to the nature of diets fed (dominant effect of barley), limited change in dietary composition as the result of DDGS inclusion, large animal-to-animal variation, and possibly additional stress as a result of transport just before slaughter. Ruminal densities of a key fiber-digesting bacteria specie that produces 11t-18:1 from linoleic and linolenic acids (Butyrivibrio fibrisolvens), and a lactate producer originally thought responsible for production of 10t, 12c-18:2 (Megasphaera elsdenii) were not influenced by diet (P > 0.05).
Resumo:
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.
Resumo:
The prevalence of latent autoimmune diabetes in adults (LADA) in patients diagnosed with type 2 diabetes mellitus (T2DM) ranges from 7 to 10% (1). They present at a younger age and have a lower BMI but poorer glycemic control, which may increase the risk of complications (2). However, a recent analysis of the Collaborative Atorvastatin Diabetes Study (CARDS) has demonstrated no difference in macrovascular or microvascular events between patients with LADA and T2DM, but neuropathy was not assessed (3). Previous studies quantifying neuropathy in patients with LADA are limited. In this study, we aimed to accurately quantify neuropathy in subjects with LADA compared with matched patients with T2DM.
Resumo:
Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only similar to 20% of total anthocyanins to similar to 30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial nonspecific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.
Resumo:
Purpose To explore the effect of small-aperture optics, designed to aid presbyopes by increasing ocular depth-of-focus, on measurements of the visual field. Methods Simple theoretical and ray-tracing models were used to predict the impact of different designs of small-aperture contact lenses or corneal inlays on the proportion of light passing through natural pupils of various diameters as a function of the direction in the visual field. The left eyes of five healthy volunteers were tested using three afocal, hand-painted opaque soft contact lenses (www.davidthomas.com). Two were opaque over a 10 mm diameter but had central clear circular apertures of 1.5 and 3.0 mm in diameter. The third had an annular opaque zone with inner and outer diameters of 1.5 and 4.0 mm, approximately simulating the geometry of the KAMRA inlay (www.acufocus.com). A fourth, clear lens was used for comparison purposes. Visual fields along the horizontal meridian were evaluated up to 50° eccentricity with static automated perimetry (Medmont M700, stimulus Goldmann-size III; www.medmont.com). Results According to ray-tracing, the two lenses with the circular apertures were expected to reduce the relative transmittance of the pupil to zero at specific field angles (around 60° for the conditions of the experimental measurements). In contrast, the annular stop had no effect on the absolute field but relative transmittance was reduced over the central area of the field, the exact effects depending upon the natural pupil diameter. Experimental results broadly agreed with these theoretical expectations. With the 1.5 and 3.0 mm pupils, only minor losses in sensitivity (around 2 dB) in comparison with the clear-lens case occurred across the central 10° radius of field. Beyond this angle, sensitivity losses increased, to reach about 7 dB at the edge of the measured field (50°). The field results with the annular stop showed at most only a slight loss in sensitivity (≤3 dB) across the measured field. Conclusion The present theoretical and experimental results support earlier clinical findings that KAMRA-type annular stops, unlike circular artificial pupils, have only minor effects on measurements of the visual field.
Resumo:
Naked oat (Avena sativa f.sp. nuda L.) is the highest quality cereal in northern growing conditions. However the cultivation area of naked oat is remarkably small. Major challenges for naked oat production are to observe its nakedness. The caryopsis of naked oat is sensitive to mechanical damage at harvest, especially at high grain moisture content. The greater the grain moisture content of naked oat at harvest, the more loses of germination capacity was caused by threshing. For producing high quality naked oat seed, it is recommended that harvesting be done at as low grain moisture content as possible. However, if this is not possible, better germination can be ensure with gentle harvest by reducing the cylinder speed. In spite of conventional oat s excellent fat and amino acid composition in animal feed use, as far as nutritional value is concerned, the total energy yield of oat is weaker than other cereals because of the hulls. Also with naked oat the dehulling is not complete, while hull content on different cultivars mostly varied between one to six percent. In addition to genotype, environmental conditions markedly control the expression of nakedness. Thresher settings had only limited effects on hull content. The function of hulls is to protect the groat, but this was confirmed only for Finnish, small grain, cultivar Lisbeth. The oat kernel is generally covered with fine silky hairs termed trichomes. The trichomes of naked oat are partly lost during threshing and handling of grains. Trichomes can cause itchiness in those handling the grains and also accumulate and form fine dust and can block-up machinery. The cultivars differed considerably in pubescence. Some thresher settings, including increased cylinder speed, slightly increased grain polishing such that grains had some areas completely free of trichomes. Adjusting thresher settings was generally not an efficient means of solving the problems associated with naked oat trichomes. The main differences in cultivation costs between naked and conventional oat lie in the amount of seeds required and the drying costs. The main differences affecting the economic result lie in market prices, yield level and feed value. The results indicate that naked oat is financially more profitable than conventional oat, when the crop is sold at a specific price at all yield levels and when the crop is used as feed at highest yield level. At lower yield levels, conventional oat is, in spite of its lower feed value, the more profitable option for feed use. Dehulled oat did not achieve the same economic result as naked oat, as the cost of dehulling, including the hull waste, was considerable. According to this study naked oat can be cultivated successfully under northern conditions, when taking into consideration the soft, naked grain through cultivation chain.
Resumo:
The structures of (1→3),(1→4)-β-D-glucans of oat bran, whole-grain oats and barley and processed foods were analysed. Various methods of hydrolysis of β-glucan, the content of insoluble fibre of whole grains of oats and barley and the solution behaviour of oat and barley β-glucans were studied. The isolated soluble β-glucans of oat bran and whole-grain oats and barley were hydrolysed with lichenase, an enzyme specific for (1→3),(1→4)-β-D-β-glucans. The amounts of oligosaccharides produced from bran were analysed with capillary electrophoresis and those from whole-grains with high-performance anion-exchange chromatography with pulse-amperometric detection. The main products were 3-O-β-cellobiosyl-D-glucose and 3-O-β-cellotriosyl-D-glucose, the oligosaccharides which have a degree of polymerisation denoted by DP3 and DP4. Small differences were detected between soluble and insoluble β-glucans and also between β-glucans of oats and barley. These differences can only be seen in the DP3:DP4 ratio which was higher for barley than for oat and also higher for insoluble than for soluble β-glucan. A greater proportion of barley β-glucan remained insoluble than of oat β-glucan. The molar masses of soluble β-glucans of oats and barley were the same as were those of insoluble β-glucans of oats and barley. To analyse the effects of cooking, baking, fermentation and drying, β-glucan was isolated from porridge, bread and fermentate and also from their starting materials. More β-glucan was released after cooking and less after baking. Drying decreased the extractability for bread and fermentate but increased it for porridge. Different hydrolysis methods of β-glucan were compared. Acid hydrolysis and the modified AOAC method gave similar results. The results of hydrolysis with lichenase gave higher recoveries than the other two. The combination of lichenase hydrolysis and high-performance anion-exchange chromatography with pulse-amperometric detection was found best for the analysis of β-glucan content. The content of insoluble fibre was higher for barley than for oats and the amount of β-glucan in the insoluble fibre fraction was higher for oats than for barley. The flow properties of both water and aqueous cuoxam solutions of oat and barley β-glucans were studied. Shear thinning was stronger for the water solutions of oat β-glucan than for barley β-glucan. In aqueous cuoxam shear thinning was not observed at the same concentration as in water but only with high concentration solutions. Then the viscosity of barley β-glucan was slightly higher than that of oat β-glucan. The oscillatory measurements showed that the crossover point of the G´ and G´´ curves was much lower for barley β-glucan than for oat β-glucan indicating a higher tendency towards solid-like behaviour for barley β-glucan than for oat β-glucan.