644 resultados para Skeletal-muscle Fibers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myogenin gene encodes an evolutionarily conserved basic helix-loop-helix transcription factor that regulates the expression of skeletal muscle-specific genes and its homozygous deletion results in mice who die of respiratory failure at birth. The histology of skeletal muscle in the myogenin null mice is reminiscent of that found in some severe congenital myopathy patients, many of whom also die of respiratory complications and provides the rationale that an aberrant human myogenin (myf4) coding region could be associated with some congenital myopathy conditions.^ With PCR, we found similarly sized amplimers for the three exons of the myogenin gene in 37 patient and 40 control samples. In contrast to the GeneBank sequence for human myogenin, we report several differences in flanking and coding regions plus an additional 659 and 498 bps in the first and second introns, respectively, in all patients and controls. We also find a novel (CA)-dinucleotide repeat in the second intron. No causative mutations were detected in the myogenin coding regions of genomic DNA from patients with severe congenital myopathy.^ Severe congenital myopathies in humans are often associated with respiratory complications and pulmonary hypoplasia. We have employed the myogenin null mouse, which lacks normal development of skeletal muscle fibers as a genetically defined severe congenital myopathy mouse model to evaluate the effect of absent fetal breathing movement on pulmonary development.^ Significant differences are observed at embryonic days E14, E17 and E20 of lung:body weight, total DNA and histologically, suggesting that the myogenin null lungs are hypoplastic. RT-PCR, in-situ immunofluorescence and EM reveal pneumocyte type II differentiation in both null and wild lungs as early as E14. However, at E14, myogenin null lungs have decreased BrdU incorporation while E17 through term, augmented cell death is detected in the myogenin null lungs, not seen in wild littermates. Absent mechanical forces appear to impair normal growth, but not maturation, of the developing lungs in myogenin null mouse.^ These investigations provide the basis for delineating the DNA sequence of the myogenin gene and and highlight the importance of skeletal muscle development in utero for normal lung organogenesis. My observation of no mutations within the coding regions of the human myogenin gene in DNA from patients with severe congenital myopathy do not support any association with this condition. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The objective of this study was to evaluate the effects of two different mean arterial blood pressure (MAP) targets on needs for resuscitation, organ dysfunction, mitochondrial respiration and inflammatory response in a long-term model of fecal peritonitis. METHODS: Twenty-four anesthetized and mechanically ventilated pigs were randomly assigned (n = 8/group) to a septic control group (septic-CG) without resuscitation until death or one of two groups with resuscitation performed after 12 hours of untreated sepsis for 48 hours, targeting MAP 50-60 mmHg (low-MAP) or 75-85 mmHg (high-MAP). RESULTS: MAP at the end of resuscitation was 56 ± 13 mmHg (mean ± SD) and 76 ± 17 mmHg respectively, for low-MAP and high-MAP groups. One animal each in high- and low-MAP groups, and all animals in septic-CG died (median survival time: 21.8 hours, inter-quartile range: 16.3-27.5 hours). Norepinephrine was administered to all animals of the high-MAP group (0.38 (0.21-0.56) mcg/kg/min), and to three animals of the low-MAP group (0.00 (0.00-0.25) mcg/kg/min; P = 0.009). The high-MAP group had a more positive fluid balance (3.3 ± 1.0 mL/kg/h vs. 2.3 ± 0.7 mL/kg/h; P = 0.001). Inflammatory markers, skeletal muscle ATP content and hemodynamics other than MAP did not differ between low- and high-MAP groups. The incidence of acute kidney injury (AKI) after 12 hours of untreated sepsis was, respectively for low- and high-MAP groups, 50% (4/8) and 38% (3/8), and in the end of the study 57% (4/7) and 0% (P = 0.026). In septic-CG, maximal isolated skeletal muscle mitochondrial Complex I, State 3 respiration increased from 1357 ± 149 pmol/s/mg to 1822 ± 385 pmol/s/mg, (P = 0.020). In high- and low-MAP groups, permeabilized skeletal muscle fibers Complex IV-state 3 respiration increased during resuscitation (P = 0.003). CONCLUSIONS: The MAP targets during resuscitation did not alter the inflammatory response, nor affected skeletal muscle ATP content and mitochondrial respiration. While targeting a lower MAP was associated with increased incidence of AKI, targeting a higher MAP resulted in increased net positive fluid balance and vasopressor load during resuscitation. The long-term effects of different MAP targets need to be evaluated in further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal nitric oxide synthase (nNOS) in fast-twitch skeletal muscle fibers is primarily particulate in contrast to its greater solubility in brain. Immunohistochemistry shows nNOS localized to the sarcolemma, with enrichment at force transmitting sites, the myotendinous junctions, and costameres. Because this distribution is similar to dystrophin, we determined if nNOS expression was affected by the loss of dystrophin. Significant nNOS immunoreactivity and enzyme activity was absent in skeletal muscle tissues from patients with Duchenne muscular dystrophy. Similarly, in dystrophin-deficient skeletal muscles from mdx mice both soluble and particulate nNOS was greatly reduced compared with C57 control mice. nNOS mRNA was also reduced in mdx muscle in contrast to mRNA levels for a dystrophin binding protein, alpha 1-syntrophin. nNOS levels increased dramatically from 2 to 52 weeks of age in C57 skeletal muscle, which may indicate a physiological role for NO in aging-related processes. Biochemical purification readily dissociates nNOS from the dystrophin-glycoprotein complex. Thus, nNOS is not an integral component of the dystrophin-glycoprotein complex and is not simply another dystrophin-associated protein since the expression of both nNOS mRNA and protein is affected by dystrophin expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ciliary neurotrophic factor alpha-receptor(CNTFRalpha) is required for motoneuron survival during development, but the relevant ligand(s) has not been determined. One candidate is the heterodimer formed by cardiotrophin-like cytokine (CLC) and cytokine-like factor 1 (CLF). CLC/CLF binds to CNTFRalpha and enhances the survival of developing motoneurons in vitro; whether this novel trophic factor plays a role in neural development in vivo has not been tested. We examined motor and sensory neurons in embryonic chicks treated with CLC and in mice with a targeted deletion of the clf gene. Treatment with CLC increased the number of lumbar spinal cord motoneurons that survived the cell death period in chicks. However, this effect was regionally specific, because brachial and thoracic motoneurons were unaffected. Similarly, newborn clf -/- mice exhibited a significant reduction in lumbar motoneurons, with no change in the brachial or thoracic cord. Clf deletion also affected brainstem motor nuclei in a regionally specific manner; the number of motoneurons in the facial but not hypoglossal nucleus was significantly reduced. Sensory neurons of the dorsal root ganglia were not affected by either CLC treatment or clf gene deletion. Finally, mRNA for both clc and clf was found in skeletal muscle fibers of embryonic mice during the motoneuron cell death period. These findings support the view that CLC/CLF is a target-derived factor required for the survival of specific pools of motoneurons. The in vivo actions of CLC and CLF can account for many of the effects of CNTFRalpha on developing motoneurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordinated beating of the heart depends on a group ofhighly specialized cells that constitute the cardiac conduction system. Among these cells, the Purkinje fibers are responsible for propagation of the electric impulse into the ventricles. In early stages of development, Purkinje fibers and skeletal muscle fibers originate from similar but separate populations of myocytes. The role of the MyoD family of transcription factors in the development of the myotube is well known, but the role of these factors in the development of the Purkinje fiber is not. Members of the T-Box family of transcription.The coordinated beating of the heart depends on a group ofhighly specialized cells that constitute the cardiac conduction system. Among these cells, the Purkinje fibers are responsible for propagation of the electric impulse into the ventricles. In early stages of development, Purkinje fibers and skeletal muscle fibers originate from similar but separate populations of myocytes. The role of the MyoD family of transcription factors in the development of the myotube is well known, but the role of these factors in the development of the Purkinje fiber is not. Members of the T-Box family of transcription factors are also involved in the development of various cardiac tissues, including the conduction system but little is known about their role in the development of the Purkinje fiber. We explored the expression of members of the MyoD and T-Box families in the developing cardiac conduction system in vivo and in vitro. We showed that the expression of these factors changes as the myocyte differentiates into the Purkinje fiber. We also showed that NRG-1, a secreted protein involved in the development of the Purkinje fiber, features a dose-dependent response in the differentiation of cultured ventricular myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM).We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used1H-magnetic resonance spectroscopy to noninvasively determine total creatine (TCr), choline-containing compounds (Cho), and intracellular (IT) and extracellular (between-muscle fibers) triglycerides (ET) in three human skeletal muscles. Subjects' (n = 15 men) TCr concentrations in soleus [Sol; 100.2 ± 8.3 (SE) mmol/kg dry wt] were lower (P < 0.05) than those in gastrocnemius (Gast; 125.3 ± 9.2 mmol/kg dry wt) and tibialis anterior (TA; 123.7 ± 8.8 mmol/kg dry wt). The Cho levels in Sol (35.8 ± 3.6 mmol/kg dry wt) and Gast (28.5 ± 3.5 mmol/kg dry wt) were higher (P < 0.001 andP < 0.01, respectively) compared with TA (13.6 ± 2.4 mmol/kg dry wt). The IT values were found to be 44.8 ± 4.6 and 36.5 ± 4.2 mmol/kg dry wt in Sol and Gast, respectively. The IT values of TA (24.5 ± 4.5 mmol/kg dry wt) were lower than those of Sol (P < 0.01) and Gast (P < 0.05). There were no differences in ET [116.0 ± 11.2 (Sol), 119.1 ± 18.5 (Gast), and 91.4 ± 19.2 mmol/kg dry wt (TA)]. It is proposed that the differences in metabolite levels may be due to the differences in fiber-type composition and deposition of metabolites due to the adaptation of different muscles during locomotion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition of the extracellular matrix (ECM) of skeletal muscle fibres is a unique environment that supports the regenerative capacity of satellite cells; the resident stem cell population. The impact of environment has great bearing on key properties permitting satellite cells to carry out tissue repair. In this study, we have investigated the influence of the ECM and glycolytic metabolism on satellite cell emergence and migration- two early processes required for muscle repair. Our results show that both influence the rate at which satellite cells emerge from the sub-basal lamina position and their rate of migration. These studies highlight the necessity of performing analysis of satellite behaviour on their native substrate and will inform on the production of artificial scaffolds intended for medical uses.