883 resultados para Sintering additives
Resumo:
In this work two different procedures to utilize the sol-gel technology were applied to immobilize/encapsulate enzymes and living cells. CO2 has reached levels in the atmosphere that make it a pollutant. New methods to utilize this gas to obtain products of added value can be very important, both from an environmentally point of view and from an economic standpoint. The first goal of this work was to study the first reaction of a sequential, three-step, enzymatic process that carries out the conversion of CO2 to methanol. Of the three oxidoreductases involved, our focus was on formate dehydrogenase (FateDH) that converts CO2 to formate. This reaction requires the presence of the cofactor β-nicotinamide adenine dinucleotide in reduced form (NADH). The cofactor is expensive and unstable. Our experiments were directed towards generating NADH from its oxidized form (NAD+), using glutamate dehydrogenase (GDH). The formation of NADH from NAD+ in aqueous medium was studied with both free and sol-gel entrapped GDH. This reaction was then followed by the conversion of CO2 to formate, catalysed by free or sol-gel entrapped FateDH. The quantification of NADH/NAD+ was made using UV/Vis spectroscopy. Our results showed that it was possible to couple the GDH-catalyzed generation of the cofactor NADH with the FateDH-catalyzed conversion of CO2, as confirmed by the detection of formate in the medium, using High Performance Liquid Chromatography (HPLC). The immobilization of living cells can be advantageous from the standpoint of ease of recovery, reutilization and physical separation from the medium. Also dead cells may not always exhibit enzymatic activities found with living cells. In this work cell encapsulation was performed using Escherichia coli bacteria. To reduce toxicity for living organisms, the sol-gel method was different than for enzymes, and involved the use of aqueous-based precursors. Initial encapsulation experiments and viability tests were carried out with E. coli K12. Our results showed that sol-gel entrapment of the cells was achieved, and that cell viability could be increased with additives, namely betaine that led to greater viability improvement and was selected for further studies. For an approach to “in-cell” Nuclear Magnetic Resonance (NMR) experiments, the expression of the protein ctCBM11 was performed in E. coli BL21. It was possible to obtain an NMR signal from the entrapped cells, a considerable proportion of which remained alive after the NMR experiments. However, it was not possible to obtain a distinctive NMR signal from the target protein to distinguish it from the other proteins in the cell.
Resumo:
This work will discuss the use of different paper membranes as both the substrate and dielectric for field-effect memory transistors. Three different nanofibrillated cellulose membranes (NFC) were used as the dielectric layer of the memory transistors (NFC), one with no additives, one with an added polymer PAE and one with added HCl. Gallium indium zinc oxide (GIZO) was used as the device’s semiconductor and gallium aluminium zinc oxide (GAZO) was used as the gate electrode. Fourier transform infrared spectroscopy (FTIR) was used to access the water content of the paper membranes before and after vacuum. It was found that the devices recovered their water too quickly for a difference to be noticeable in FTIR. The transistor’s electrical performance tests yielded a maximum ION/IOFF ratio of around 3,52x105 and a maximum subthreshold swing of 0,804 V/decade. The retention time of the dielectric charge that grants the transistor its memory capabilities was accessed by the measurement of the drain current periodically during 144 days. During this period the mean drain current did not lower, leaving the retention time of the device indeterminate. These results were compared with similar devices revealing these devices to be at the top tier of the state-of-the-art.
Resumo:
Contemporary painting places, and will continue to place, several questions about its meaning, its chemical nature, its durability and the best way to preserve it. This research aims at putting together comprehensive data on vinyl based paints, including their components, their properties, their aging behavior and their response to selected cleaning products. In this project degradation mechanisms of vinyl binders and formulations used in the 20th and 21st century were studied. Stability over time of selected vinyl polymers was assessed through natural indoor and artificially aging. The objective was to enhance knowledge and understanding of vinyl emulsion formulations and their performance over time. Overall conservation state of pictorial layers namely, adhesion, cohesion and discoloration of selected case studies from the Portuguese artist Julião Sarmento (b.1948) was correlated with the observed molecular level changes studied in laboratory experiments. Sarmento’s paintings were chosen due to conservation concerns (discoloration) on some of his works from the 90’s. Besides, research was carried out to start increasing the knowledge of what can be expected of PVAc based paints in terms of response to conservation treatments namely, surface cleaning. Artificial aging showed that the most recent formulations which are based on a poly(vinyl acetate), poly(vinyl chloride) and polyethylene terpolymer are less stable when compared to some homopolymer formulations. From the four pigments studied, titanium dioxide rutile and a carbon based black proved to be stabilizers for both types of polymer. The mixture lithopone plus calcium carbonate has showed to have a photocatalytic effect on the binders. The studied paintings showed to be in an overall good state of conservation except for the paintings created in the 90’s with white glue and a mixture of white lithoponeand calcium carbonate. Discoloration of this white paint seems to be irreversible and ongoing and is still a major concern. The disapearance of the plasticizer was the only change detected. The current works created by Sarmento are expected to be more stable as they were painted using the rutile titanium dioxide. Immersion/cleaning tests showed that vinyl based paints can be susceptible to water and organic solvents like ethanol as some evidences point to the removal/diffusion of additives from the paint. The observations made point to the need to further proceed in this research field.
Resumo:
Some aspects of curare research carried out over the last 25 years are discussed. Accepting a pharmacological rather than purely ethnological definition means, that curares are not limited to South America but that they are also known from Central Africa and South-EastAsia. Among the criteria that have been suggested for classifying South American curares: type of container, geographical origin, botanical sourcesof the active, constituent!, and chemical composition. A combination of botanical and geographical criteria leads to much the same regional ;groupings a combination of criteria involving the type of container and the chemical composition. The active principles in curares may derive from members of thr Loganiaceae (Strychnos) and/or Menispermaceae mainly Chondrodendron and Curarea, but also Abuta,Anomospermum, Cissampelos, Sciadotenia, and Telitoxicum). Certain of the Strychnos dimeric indole alkaloids can undergo a variety of cleavages, oxidations, and isomerizations; hence., some of the compounds obtained by normal isolation procedures one almost certainly artefacts. The different genera of, Menispermaceae a wide range of bisbenzyl and other types of isoquinoline alkaloids. Many of the plant additives also contain a variety of isoquinoline bases, and this has to be taken into account in assessing the contribution these ingredients may make to the ovzJuxll activity of, curare. Loganiaceae-bated curares with toxiferinzas major alkaloid tend to be the most toxic. In the case of Menispermaceae-based products, there-is evidence that the process by which they are made may lead to a considerable increase in the toxicity of the finished poisons as compared with the original plant materials. The mechanism of action of the alkaloids it, outlined, and the role of curare alkaloids in the development of, present-day muscle-relaxant drugs used in surgery is indicated. Attention lb drawn to reported medicinal uses of some of the alkaloid-bearing plants incorporated into curares, suggesting that further evaluation of these plants may be of interest.
Resumo:
Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.
Resumo:
The use of sustainable solutions in construction is not just an option, but is increasingly becoming a need of the Society. Thus, nowadays the recycling of waste materials is a growing technology that needs to be continuously improved, namely by researching new solutions for waste valorisation and by increasing the amount of wastes reused. In the paving industry, the reuse of reclaimed asphalt (RA) is becoming common practice, but needs further research work. Thus, this study aims to increase the incorporation of RA and other waste materials in the production of recycled asphalt mixtures in order to improve their mechanical, environmental and economic performance. Recycled mixtures with 50% RA were analysed in this study, including: i) RA selection, preparation and characterization; ii) incorporation of other waste materials as binder additives or modifiers, like used motor oil (UMO) and waste high density polyethylene (HDPE); iii) production of different mixtures (without additives; with UMO; with UMO and HDPE) and comparison of their performance in order to assess the main advantages of each solution. With this study it was concluded that up to 7.5 % of UMO and 4.0 % of HDPE can be used in a new modified binder for asphalt mixtures with 50 % of RA, which have excellent properties concerning the rutting with WTS = 0.02 mm/103 cycles, the fatigue resistance with ε6 = 160.4, and water sensitivity with an ITSR of 81.9 %.
Resumo:
Polymer based wicking structures were fabricated by sintering powders of polycarbonate (PC), ultra-high molecular weight polyethylene and polyamide 12, aiming at selecting a suitable material for an innovative electroencephalography (EEG) bio-electrode. Preliminary experiments showed that PC based wicks displayed the best mechanical properties, therefore more detailed studies were carried out with PC to evaluate the influence of powder granulometry and processing parameters (pressure, temperature and time) on the mechanical properties, porosity, mean pore radius and permeability of the wicks. It was concluded that the mechanical properties are significantly enhanced by increasing the processing time and pressure, although at the expense of a significant decrease of porosity and mean pore diameter (and thus permeability), particularly for the highest applied pressures (74kPa). However, a good compromise between porosity/permeability and mechanical properties could be obtained by sintering PC powders of particle sizes below 500μm at 165°C for 5min, upon an applied pressure of 56kPa. Moreover, PC proved to be chemically stable in contact with an EEG common used disinfectant. Thus, wicking structures with appropriate properties for the fabrication of reusable bio-electrodes could be fabricated from the sintering of PC powders.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Zearalenone (ZEN) is a mycotoxin that has relatively low acute toxicity. However, it is a potent oestrogen, interfering with the reproductive tract of animals. Among other effects, ZEN decreases animals fertility, and induces fibrosis in the uterus, breast cancer and endometrial carcinoma (Zinedine et al., 2007). Anti-mycotoxin additives (AMA) are defined as a group of products that, when added to animal feed, are capable of adsorbing, inactivating, or neutralizing mycotoxins in the gastrointestinal tract of animals. One example of these products are adsorbents based on yeast cell walls, a safe and beneficial animal feed additive (Abreu et al., 2008). When based on active cells, yeast based products also act as a probiotic, contributing to improve the general animal health because it stimulates their immune system and promotes the integrity of intestinal mucosa (Albino et al., 2006). Strains of Saccharomyces cerevisiae isolated from silage were tested for their ZEN removal capability. Their effect on - and b-zearalenol (-ZOL and b-ZOL) was also tested. Strains were grown on YPD separately supplemented with ZEN, -ZOL and b-ZOL, and their elimination from culture media was quantified over time by HPLC-FL.
Resumo:
Lactic acid bacteria (LAB) play a key role in the biopreservation of a wide range of fermented food products, such as yogurt, cheese, fermented milks, meat, fish, vegetables (sauerkraut, olives and pickles), certain beer brands, wines and silage, allowing their safe consumption, which gave to these bacteria a GRAS (Generally Recognised as Safe) status. Besides that, the use of LAB in food and feed is a promising strategy to reduce the exposure to dietary mycotoxins, improving their shelf life and reducing health risks, given the unique mycotoxin decontaminating characteristic of some LAB. Mycotoxins present carcinogenic, mutagenic, teratogenic, neurotoxic and immunosuppressive effects over animals and Humans, being the most important ochratoxin A (OTA), aflatoxins (AFB1), trichothecenes, zearalenone (ZEA), fumonisin (FUM) and patulin. In a previous work of our group it was observed OTA biodegradation by some strains of Pediococcus parvulus isolated from Douro wines. So, the aim of this study was to enlarge the screening of the biodetoxification over more mycotoxins besides OTA, including AFB1, and ZEA. This ability was checked in a collection of LAB isolated from vegetable (wine, olives, fruits and silage) and animal (milk and dairy products, sausages) sources. All LAB strains were characterized phenotypically (Gram, catalase) and genotypically. Molecular characterisation of all LAB strains was performed using genomic fingerprinting by MSP- PCR with (GTG)5 and csM13 primers. The identification of the isolates was confirmed by 16S rDNA sequencing. To study the ability of LAB strains to degrade OTA, AFB1 and ZEA, a MRS broth medium was supplemented with 2.0 g/mL of each mycotoxin. For each strain, 2 mL of MRS supplemented with the mycotoxins was inoculated in triplicate with 109 CFU/mL. The culture media and bacterial cells were extracted by the addition of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v) to the culture tubes. A 2 mL sample was then collected and filtered into a clean 2 mL vial using PP filters with 0.45 m pores. The samples were preserved at 4 °C until HPLC analysis. Among LAB tested, 10 strains isolated from milk were able to eliminate AFB1, belonging to Lactobacillus casei (7), Lb. paracasei (1), Lb. plantarum (1) and 1 to Leuconostoc mesenteroides. Two strains of Enterococcus faecium and one of Ec. faecalis from sausage eliminated ZEA. Concerning to strains of vegetal origin, one Lb. plantarum isolated from elderberry fruit, one Lb. buchnerii and one Lb. parafarraginis both isolated from silage eliminated ZEA. Other 2 strains of Lb. plantarum from silage were able to degrade both ZEA and OTA, and 1 Lb. buchnerii showed activity over AFB1. These enzymatic activities were also verified genotypically through specific gene PCR and posteriorly confirmed by sequencing analysis. In conclusion, due the ability of some strains of LAB isolated from different sources to eliminate OTA, AFB1 and ZEA one can recognize their potential biotechnological application to reduce the health hazards associated with these mycotoxins. They may be suitable as silage inoculants or as feed additives or even in food industry.
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análises Químicas
Resumo:
Dissertação de mestrado em Técnicas de Caraterização e Análise Química
Resumo:
Bioactive compounds are a large group of compounds (antimicrobials, antioxidants, nutrients, etc.), but its use in edible fi lms and coatings for application on fruits and vegetables has been very important because nowadays the consumers demand fruits and vegetables that are fresh, healthy, high quality and easy to prepare. A number of investigations have shown that the use of additives in edible fi lms and coatings improve its functionability and provide compounds for human health. However, it is necessary to continue research that can generate specifi c or tailor-made edible fi lms and coatings for each product with the best characteristics for preservation. In this review we present and analyze the concepts, progress and perspectives in the design and application of edible fi lms and coatings for fruits and vegetables in order to defi ne the challenges and opportunities that this topic of study in the fi eld of science, technology and food engineering.
Resumo:
Programa Doutoral em Engenharia Mecânica.
Resumo:
Treball de recerca realitzat per una alumna d’ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l’any 2008. L’objectiu d’aquest treball de recerca és estudiar els diferents sistemes de coordenades de colors en mescles additives i subtractives i les seves aplicacions pràctiques en la transmissió i la reproducció d’imatges en color. Primer de tot es va fer una recerca bibliogràfica sobre les característiques elementals de la llum, sobre els trets més importants de l’anatomia de l’ull humà i sobre la corba CIE i l’estudi de les coordenades cromàtiques i les seves aplicacions. D’altra banda, es va confeccionar una maqueta de l’obtenció de la corba CIE, elaborada en metacrilat. S’han complert els objectius previstos amb una exposició sistemàtica i clara dels diferents tipus de coordenades cromàtiques i les seves aplicacions amb exemples originals de l’autora. Amb les aplicacions de mescles additives, s’ha pogut veure la gran importància que tenen les coordenades per a la transmissió i l’emmagatzemament d’imatges. A més a més les coordenades subtractives són de gran utilitat en les impressions. Finalment s’ha pogut veure que, gràcies a les coordenades, es permet la codificació i la transmissió dels colors.