605 resultados para Simulador ESPPADA
Resumo:
Thermal methods made heavy oil production possible in fields where primary recovery failed. Throughout the years steam injection became one of the most important alternatives to increase heavy oil recovery. There are many types of steam injection, and one of them is the cyclic steam injection, which has been used with success in several countries, including Brazil. The process involves three phases: firstly, steam is injected, inside of the producing well; secondly, the well is closed (soak period); and finally, the well is put back into production. These steps constitute one cycle. The cycle is repeated several times until economical production limit is reached. Usually, independent of reservoir type, as the number of cycles increases the cyclic injection turns less efficient. This work aims to analyze rock and reservoir property influence in the cyclic steam injection. The objective was to study the ideal number of cycles and, consequently, process optimization. Simulations were realized using the STARS simulator from the CMG group based in a proposed reservoir model. It was observed that the reservoir thickness was the most important parameter in the process performance, whilst soaking time influence was not significant
Resumo:
This dissertation aims to assess the representativeness of the manual chilled mirror analyzer (model II Chanscope 13-1200-CN-2) used for the determination of condensed hydrocarbons of natural gas compared to the indirect methods, based on thermodynamic models equation of state. Additionally, it has been implemented in this study a model for calculating the dew point of natural gas. The proposed model is a modification of the equation of state of Peng-Robinson admits that the groups contribution as a strategy to calculate the binary interaction parameters kij (T) temperature dependence. Experimental data of the work of Brown et al. (2007) were used to compare the responses of the dew point of natural gas with thermodynamic models contained in the UniSim process simulator and the methodology implemented in this study. Then two natural gas compositions were studied, the first being a standard gas mixture gravimetrically synthesized and, second, a mixture of processed natural gas. These experimental data were also compared with the results presented by UniSim process simulator and the thermodynamic model implemented. However, data from the manual analysis results indicated significant differences in temperature, these differences were attributed to the formation of dew point of water, as we observed the appearance of moisture on the mirror surface cooling equipment
Resumo:
The flow assurance has become one of the topics of greatest interest in the oil industry, mainly due to production and transportation of oil in regions with extreme temperature and pressure. In these operations the wax deposition is a commonly problem in flow of paraffinic oils, causing the rising costs of the process, due to increased energy cost of pumping, decreased production, increased pressure on the line and risk of blockage of the pipeline. In order to describe the behavior of the wax deposition phenomena in turbulent flow of paraffinic oils, under different operations conditions, in this work we developed a simulator with easy interface. For that we divided de work in four steps: (i) properties estimation (physical, thermals, of transport and thermodynamics) of n-alkanes and paraffinic mixtures by using correlations; (ii) obtainment of the solubility curve and determination the wax appearance temperature, by calculating the solid-liquid equilibrium of parafinnic systems; (iii) modelling wax deposition process, comprising momentum, mass and heat transfer; (iv) development of graphic interface in MATLAB® environment for to allow the understanding of simulation in different flow conditions as well as understand the matter of the variables (inlet temperature, external temperature, wax appearance temperature, oil composition, and time) on the behavior of the deposition process. The results showed that the simulator developed, called DepoSim, is able to calculate the profile of temperature, thickness of the deposit, and the amount of wax deposited in a simple and fast way, and also with consistent results and applicable to the operation
Resumo:
O óleo produzido nos novos campos de petróleo está cada vez mais parafínico e viscoso, com isso, à medida que o óleo é escoado, parafinas são depositadas sobre as paredes internas do tubo, e ao longo do tempo, tendem a reduzir drasticamente a área transversal ao escoamento. Visando estudar o processo de solubilização da parafina em dutos, esse trabalho objetiva desenvolver modelos matemáticos que represente o processo, com base nos fenômenos envolvidos no mesmo tais como transferência de massa, transferência de energia e equilíbrio sólido-líquido, implementando-os em um ambiente de desenvolvimento VBA (Visual Basic) for Excel ®. O presente trabalho foi realizado em quatro etapas: i) modelagem dos fenômenos de transferência de calor e massa, ii) modelagem da rotina dos coeficientes de atividade através do modelo UNIFAC e modelagem do sistema de equilíbrio sólido-líquido; iii) modelagem matemática do processo de solubilização e cálculo da espessura da parafina ao longo do tempo; iv) implementação dos modelos em um ambiente de desenvolvimento VBA for Excel® e criação de um simulador com uma interface gráfica, para simular o processo de solubilização da parafina depositada em dutos e sua otimização. O simulador conseguiu produzir soluções bastante adequadas, mantendo continuidade das equações diferenciáveis do balanço de energia e de massa, com uma interpretação física viável, sem a presença de dissipação de oscilações nos perfis de temperatura e massa. Além disso, esse simulador visa permitir a simulação nas diversas condições de escoamento, bem como compreender a importância das variáveis (vazão, temperatura de entrada, temperatura externa, cadeia carbônica do solvente). Através dos resultados foram possíveis verificar os perfis de temperatura, fração molar e o de solubilização
Resumo:
The aim of this study is to characterize and evaluate the Macro System of Regional Water Distribution Natal North (RNN) and Southern Regional Natal (RNS), covering 35% and 65% respectively of the Natal-RN City. The terms of the quality and quantity of water (surface and groundwater) were also evaluated in order to adjust the parameters that contribute to proper distribution and control in water reserves. The methodology of the work took place from collecting volumetric data of production capacity and distribution of the two treatment plants for Regional as well as the flow rates of wells. Yet the quantitative capacity of reservation, distribution and consumption of the main reservoirs, population numbers and consumption of members neighborhoods were collected. Data were tabulated and used in computational simulator EPANET to diagnose possible through the water balance, the offers and demands on the water supply system in the neighborhoods of the capital, linking them to specific distribution points. We also evaluated the wells in the levels of nitrate in water consumed. As a result it was found that some neighborhoods in the South Regional Natal, was ranked as critical supply situation: City of Hope, Lagoa Nova and Nova Descoberta, where demand exceeds supply. While in most Northern Regional Natal present deficiency in the supply system as: Lagoa Azul, the Parque dos Coqueiros, igapó, Amarante and Salinas. The rates of nitrate in the city were significant, but manageable with corrective and preventive measures. The averages were 12 mg /l-N in Candelária, 10 mg/l-N in Lagoa Nova, 9 mg/l-N in Satelite, 20 mg/l-N in Gramore and 15 mg/l-N in N. Sra. Apresentação. Therefore proper distribution of water abstracted and implementation of quality control ensures the supply required by the system, associated with preservation of Water Resources of the Metropolitan Region of Natal
Resumo:
Using formal methods, the developer can increase software s trustiness and correctness. Furthermore, the developer can concentrate in the functional requirements of the software. However, there are many resistance in adopting this software development approach. The main reason is the scarcity of adequate, easy to use, and useful tools. Developers typically write code and test it. These tests usually consist of executing the program and checking its output against its requirements. This, however, is not always an exhaustive discipline. On the other side, using formal methods one might be able to investigate the system s properties further. Unfortunately, specification languages do not always have tools like animators or simulators, and sometimes there are no friendly Graphical User Interfaces. On the other hand, specification languages usually have a compiler which normally generates a Labeled Transition System (LTS). This work proposes an application that provides graphical animation for formal specifications using the LTS as input. The application initially supports the languages B, CSP, and Z. However, using a LTS in a specified XML format, it is possible to animate further languages. Additionally, the tool provides traces visualization, the choices the user did, in a graphical tree. The intention is to improve the comprehension of a specification by providing information about errors and animating it, as the developers do for programming languages, such as Java and C++.
Resumo:
Alongside the advances of technologies, embedded systems are increasingly present in our everyday. Due to increasing demand for functionalities, many tasks are split among processors, requiring more efficient communication architectures, such as networks on chip (NoC). The NoCs are structures that have routers with channel point-to-point interconnect the cores of system on chip (SoC), providing communication. There are several networks on chip in the literature, each with its specific characteristics. Among these, for this work was chosen the Integrated Processing System NoC (IPNoSyS) as a network on chip with different characteristics compared to general NoCs, because their routing components also accumulate processing function, ie, units have functional able to execute instructions. With this new model, packets are processed and routed by the router architecture. This work aims at improving the performance of applications that have repetition, since these applications spend more time in their execution, which occurs through repeated execution of his instructions. Thus, this work proposes to optimize the runtime of these structures by employing a technique of instruction-level parallelism, in order to optimize the resources offered by the architecture. The applications are tested on a dedicated simulator and the results compared with the original version of the architecture, which in turn, implements only packet level parallelism
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances
Resumo:
Os sensores inteligentes são dispositivos que se diferenciam dos sensores comuns por apresentar capacidade de processamento sobre os dados monitorados. Eles tipicamente são compostos por uma fonte de alimentação, transdutores (sensores e atuadores), memória, processador e transceptor. De acordo com o padrão IEEE 1451 um sensor inteligente pode ser dividido em módulos TIM e NCAP que devem se comunicar através de uma interface padronizada chamada TII. O módulo NCAP é a parte do sensor inteligente que comporta o processador. Portanto, ele é o responsável por atribuir a característica de inteligência ao sensor. Existem várias abordagens que podem ser utilizadas para o desenvolvimento desse módulo, dentre elas se destacam aquelas que utilizam microcontroladores de baixo custo e/ou FPGA. Este trabalho aborda o desenvolvimento de uma arquitetura hardware/software para um módulo NCAP segundo o padrão IEEE 1451.1. A infra-estrutura de hardware é composta por um driver de interface RS-232, uma memória RAM de 512kB, uma interface TII, o processador embarcado NIOS II e um simulador do módulo TIM. Para integração dos componentes de hardware é utilizada ferramenta de integração automática SOPC Builder. A infra-estrutura de software é composta pelo padrão IEEE 1451.1 e pela aplicação especí ca do NCAP que simula o monitoramento de pressão e temperatura em poços de petróleo com o objetivo de detectar vazamento. O módulo proposto é embarcado em uma FPGA e para a sua prototipação é usada a placa DE2 da Altera que contém a FPGA Cyclone II EP2C35F672C6. O processador embarcado NIOS II é utilizado para dar suporte à infra-estrutura de software do NCAP que é desenvolvido na linguagem C e se baseia no padrão IEEE 1451.1. A descrição do comportamento da infra-estrutura de hardware é feita utilizando a linguagem VHDL
Resumo:
Neste trabalho são apresentadas duas técnicas para a avaliação da dispersão, num corpo d'água receptor, do efluente líquido de uma refinaria de petróleo. Assim, a pluma de dispersão foi caracterizada por medidas em campo de condutividade elétrica e por simulação computacional (simulador Cormix). Como caso de estudo, escolheu-se uma refinaria de petróleo cujo efluente é lançado no rio Atibaia (Paulínia/SP). O comportamento do efluente foi avaliado em um trecho de 1000 m após o ponto de lançamento. Os resultados demonstraram que a medição da condutividade elétrica é uma técnica adequada para a avaliação da dispersão de efluentes líquidos de refinaria de petróleo, pois apresentam alta condutividade elétrica e, com isso, há um forte contraste entre os valores do efluente e do rio. Além disso, outros parâmetros de qualidade da água do rio seguiram comportamento de dispersão semelhante ao da condutividade. A pluma de dispersão gerada pelo simulador computacional apresentou uma elevada concordância com os dados obtidos em campo. Nesse sentido, a simulação computacional pode ser uma ferramenta útil para a avaliação da dispersão do efluente considerando-se cenários hipotéticos, e para projetos de emissários.
Resumo:
The aim of this work was to evaluate the control in pre-emergence of the weeds brachiaria grass (Brachiaria decumbens) and goosegrass (Eleusine indica) in different depths in the ground, for the oxyfluorfen and isoxaflutole herbicides, applied in pre-emergence condition and submitted of different rain blades. The experimental design was entirely at random, with four repetitions. Each set was consisted of plastic vases with substratum capacity of 4L, filled with arenaceous ground, increased of brachiaria grass and goosegrass seeds in the depths: 0,5; 1,0; 3,0; 6,0 and 9,0 cm. Doses of 37,5 g a.i. ha -1 of isoxaflutole and 720 g a.i. ha -1 of oxyfluorfen were used. The rain blades was 5, 10 and 20 mm applied with a stationary rain simulator, beyond a treatment without rain. Visual evaluations of control at 7 and 14 days had been carried through after application of the herbicides, counting of germinated plants and dry biomass of plants without application. The development of both weeds was inhibited by herbicides, reaching 100% of control, in all depth levels. The different rain blades had not influenced the control of the weeds. In the biggest depth of sowing (9,0 cm), the emergence was above 45% to B. decumbens and 36% to E. indica in treatments without herbicides application.
Resumo:
Incluye Bibliografía
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)