926 resultados para Signal Processing, EMD, Thresholding, Acceleration, Displacement, Structural Identification
Resumo:
In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probabilitiy densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.
Resumo:
Condition-based maintenance is concerned with the collection and interpretation of data to support maintenance decisions. The non-intrusive nature of vibration data enables the monitoring of enclosed systems such as gearboxes. It remains a significant challenge to analyze vibration data that are generated under fluctuating operating conditions. This is especially true for situations where relatively little prior knowledge regarding the specific gearbox is available. It is therefore investigated how an adaptive time series model, which is based on Bayesian model selection, may be used to remove the non-fault related components in the structural response of a gear assembly to obtain a residual signal which is robust to fluctuating operating conditions. A statistical framework is subsequently proposed which may be used to interpret the structure of the residual signal in order to facilitate an intuitive understanding of the condition of the gear system. The proposed methodology is investigated on both simulated and experimental data from a single stage gearbox. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper develops an algorithm for finding sparse signals from limited observations of a linear system. We assume an adaptive Gaussian model for sparse signals. This model results in a least square problem with an iteratively reweighted L2 penalty that approximates the L0-norm. We propose a fast algorithm to solve the problem within a continuation framework. In our examples, we show that the correct sparsity map and sparsity level are gradually learnt during the iterations even when the number of observations is reduced, or when observation noise is present. In addition, with the help of sophisticated interscale signal models, the algorithm is able to recover signals to a better accuracy and with reduced number of observations than typical L1-norm and reweighted L1 norm methods. ©2010 IEEE.
Resumo:
Microvibrations, at frequencies between 1 and 1000 Hz, generated by on board equipment, propagate throughout a spacecraft structure affecting the performance of sensitive payloads. The purpose of this work is to investigate strategies to model and reduce these dynamic disturbances by active control. Initial studies were performed by considering a mass loaded panel where the disturbance excitation source consisted of point forces, the objective being to minimise the displacement at an arbitrary output location. Piezoelectric patches acting as sensors and actuators were used. The equations of motion are derived by using Lagrange's equation with modal shapes as Ritz functions. The number of sensors/actuators and their location is variable. The set of equations obtained is then transformed into state variables and some initial controller design studies have been undertaken. These are based on feedback control implemented using a full state feedback and an observer which reconstructs the state vector from the available sensor signal. Here, the basics behind the structural modelling and controller design will be described. This preliminary analysis will also be used to identify short to medium term further work.
Resumo:
We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of system identification is more robust than finding point estimates of a parametric function representation. Our principled filtering/smoothing approach for GP dynamic systems is based on analytic moment matching in the context of the forward-backward algorithm. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail. © 2011 IEEE.
Resumo:
We report the construction of a new class of micromachined displacement sensors that employ the phenomenon of vibration-mode localization for monitoring minute inertial displacements. It is demonstrated both theoretically and experimentally that the eigenstate-shifted output signal of such mode-localized displacement sensors may be as high as 1000 times greater than corresponding resonant-frequency variations that serve as the output in the more traditional vibratory resonant micromechanical displacement/motion sensors. The high parametric sensitivities attainable in such mode-localized displacement sensors, together with their inherent advantages of improved environmental robustness and electrical tunability, suggest an alternative approach in achieving improved sensitivity and stability in high-resolution displacement transduction. © 1992-2012 IEEE.
Resumo:
In this paper, a novel MPC strategy is proposed, and referred to as asso MPC. The new paradigm features an 1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. This cost choice is motivated by the successful development of LASSO theory in signal processing and machine learning. In the latter fields, sum-of-norms regularisation have shown a strong capability to provide robust and sparse solutions for system identification and feature selection. In this paper, a discrete-time dual-mode asso MPC is formulated, and its stability is proven by application of standard MPC arguments. The controller is then tested for the problem of ship course keeping and roll reduction with rudder and fins, in a directional stochastic sea. Simulations show the asso MPC to inherit positive features from its corresponding regressor: extreme reduction of decision variables' magnitude, namely, actuators' magnitude (or variations), with a finite energy error, being particularly promising for over-actuated systems. © 2012 AACC American Automatic Control Council).
Resumo:
Statistical analysis of diffusion tensor imaging (DTI) data requires a computational framework that is both numerically tractable (to account for the high dimensional nature of the data) and geometric (to account for the nonlinear nature of diffusion tensors). Building upon earlier studies exploiting a Riemannian framework to address these challenges, the present paper proposes a novel metric and an accompanying computational framework for DTI data processing. The proposed approach grounds the signal processing operations in interpolating curves. Well-chosen interpolating curves are shown to provide a computational framework that is at the same time tractable and information relevant for DTI processing. In addition, and in contrast to earlier methods, it provides an interpolation method which preserves anisotropy, a central information carried by diffusion tensor data. © 2013 Springer Science+Business Media New York.
Resumo:
In the present study, one- and two-dimensional gel electrophoresis combined with high resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) have been applied as powerful approaches for the proteome analysis of surfactant proteins SP-A and SP-D, including identification of structurally modified and truncation forms, in bronchoalveolar lavage fluid from patients with cystic fibrosis, chronic bronchitis and pulmonary alveolar proteinosis. Highly sensitive micro preparation techniques were developed for matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS analysis which provided the identification of surfactant proteins at very low levels. Owing to the high resolution, FT-ICR MS was found to provide substantial advantages for the structural identification of surfactant proteins from complex biological matrices with high mass determination accuracy. Several protein bands corresponding to SP-A and SP-D were identified by MALDI-FT-ICR MS after electrophoretic separation by one- and two-dimensional gel electrophoresis, and provided the identification of structural modifications (hydroxy-proline) and degradation products.
Resumo:
In modem signal Processing,non-linear,non-Gaussian and non-stable signals are usually the analyzed and Processed objects,especially non-stable signals. The convention always to analyze and Process non-stable signals are: short time Fourier transform,Wigner-Ville distribution,wavelet Transform and so on. But the above three algorithms are all based on Fourier Transform,so they all have the shortcoming of Fourier Analysis and cannot get rid of the localization of it. Hilbert-Huang Transform is a new non-stable signal processing technology,proposed by N. E. Huang in 1998. It is composed of Empirical Mode Decomposition (referred to as EMD) and Hilbert Spectral Analysis (referred to as HSA). After EMD Processing,any non-stable signal will be decomposed to a series of data sequences with different scales. Each sequence is called an Intrinsic Mode Function (referred to as IMF). And then the energy distribution plots of the original non-stable signal can be found by summing all the Hilbert spectrums of each IMF. In essence,this algorithm makes the non-stable signals become stable and decomposes the fluctuations and tendencies of different scales by degrees and at last describes the frequency components with instantaneous frequency and energy instead of the total frequency and energy in Fourier Spectral Analysis. In this case,the shortcoming of using many fake harmonic waves to describe non-linear and non-stable signals in Fourier Transform can be avoided. This Paper researches in the following parts: Firstly,This paper introduce the history and development of HHT,subsequently the characters and main issues of HHT. This paper briefly introduced the basic realization principles and algorithms of Hilbert-Huang transformation and confirms its validity by simulations. Secondly, This paper discuss on some shortcoming of HHT. By using FFT interpolation, we solve the problem of IMF instability and instantaneous frequency undulate which are caused by the insufficiency of sampling rate. As to the bound effect caused by the limitation of envelop algorithm of HHT, we use the wave characteristic matching method, and have good result. Thirdly, This paper do some deeply research on the application of HHT in electromagnetism signals processing. Based on the analysis of actual data examples, we discussed its application in electromagnetism signals processing and noise suppression. Using empirical mode decomposition method and multi-scale filter characteristics can effectively analyze the noise distribution of electromagnetism signal and suppress interference processing and information interpretability. It has been founded that selecting electromagnetism signal sessions using Hilbert time-frequency energy spectrum is helpful to improve signal quality and enhance the quality of data.
Resumo:
This research is concerned with the development of tactual displays to supplement the information available through lipreading. Because voicing carries a high informational load in speech and is not well transmitted through lipreading, the efforts are focused on providing tactual displays of voicing to supplement the information available on the lips of the talker. This research includes exploration of 1) signal-processing schemes to extract information about voicing from the acoustic speech signal, 2) methods of displaying this information through a multi-finger tactual display, and 3) perceptual evaluations of voicing reception through the tactual display alone (T), lipreading alone (L), and the combined condition (L+T). Signal processing for the extraction of voicing information used amplitude-envelope signals derived from filtered bands of speech (i.e., envelopes derived from a lowpass-filtered band at 350 Hz and from a highpass-filtered band at 3000 Hz). Acoustic measurements made on the envelope signals of a set of 16 initial consonants represented through multiple tokens of C1VC2 syllables indicate that the onset-timing difference between the low- and high-frequency envelopes (EOA: envelope-onset asynchrony) provides a reliable and robust cue for distinguishing voiced from voiceless consonants. This acoustic cue was presented through a two-finger tactual display such that the envelope of the high-frequency band was used to modulate a 250-Hz carrier signal delivered to the index finger (250-I) and the envelope of the low-frequency band was used to modulate a 50-Hz carrier delivered to the thumb (50T). The temporal-onset order threshold for these two signals, measured with roving signal amplitude and duration, averaged 34 msec, sufficiently small for use of the EOA cue. Perceptual evaluations of the tactual display of EOA with speech signal indicated: 1) that the cue was highly effective for discrimination of pairs of voicing contrasts; 2) that the identification of 16 consonants was improved by roughly 15 percentage points with the addition of the tactual cue over L alone; and 3) that no improvements in L+T over L were observed for reception of words in sentences, indicating the need for further training on this task
Resumo:
Existing work in Computer Science and Electronic Engineering demonstrates that Digital Signal Processing techniques can effectively identify the presence of stress in the speech signal. These techniques use datasets containing real or actual stress samples i.e. real-life stress such as 911 calls and so on. Studies that use simulated or laboratory-induced stress have been less successful and inconsistent. Pervasive, ubiquitous computing is increasingly moving towards voice-activated and voice-controlled systems and devices. Speech recognition and speaker identification algorithms will have to improve and take emotional speech into account. Modelling the influence of stress on speech and voice is of interest to researchers from many different disciplines including security, telecommunications, psychology, speech science, forensics and Human Computer Interaction (HCI). The aim of this work is to assess the impact of moderate stress on the speech signal. In order to do this, a dataset of laboratory-induced stress is required. While attempting to build this dataset it became apparent that reliably inducing measurable stress in a controlled environment, when speech is a requirement, is a challenging task. This work focuses on the use of a variety of stressors to elicit a stress response during tasks that involve speech content. Biosignal analysis (commercial Brain Computer Interfaces, eye tracking and skin resistance) is used to verify and quantify the stress response, if any. This thesis explains the basis of the author’s hypotheses on the elicitation of affectively-toned speech and presents the results of several studies carried out throughout the PhD research period. These results show that the elicitation of stress, particularly the induction of affectively-toned speech, is not a simple matter and that many modulating factors influence the stress response process. A model is proposed to reflect the author’s hypothesis on the emotional response pathways relating to the elicitation of stress with a required speech content. Finally the author provides guidelines and recommendations for future research on speech under stress. Further research paths are identified and a roadmap for future research in this area is defined.
Resumo:
This thesis reports advances in magnetic resonance imaging (MRI), with the ultimate goal of improving signal and contrast in biomedical applications. More specifically, novel MRI pulse sequences have been designed to characterize microstructure, enhance signal and contrast in tissue, and image functional processes. In this thesis, rat brain and red bone marrow images are acquired using iMQCs (intermolecular multiple quantum coherences) between spins that are 10 μm to 500 μm apart. As an important application, iMQCs images in different directions can be used for anisotropy mapping. We investigate tissue microstructure by analyzing anisotropy mapping. At the same time, we simulated images expected from rat brain without microstructure. We compare those with experimental results to prove that the dipolar field from the overall shape only has small contributions to the experimental iMQC signal. Besides magnitude of iMQCs, phase of iMQCs should be studied as well. The phase anisotropy maps built by our method can clearly show susceptibility information in kidneys. It may provide meaningful diagnostic information. To deeply study susceptibility, the modified-crazed sequence is developed. Combining phase data of modified-crazed images and phase data of iMQCs images is very promising to construct microstructure maps. Obviously, the phase image in all above techniques needs to be highly-contrasted and clear. To achieve the goal, algorithm tools from Susceptibility-Weighted Imaging (SWI) and Susceptibility Tensor Imaging (STI) stands out superb useful and creative in our system.