998 resultados para Sex instruction for teenagers
Resumo:
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity.
Resumo:
In many insect societies, workers can manipulate the reproductive output of their colony by killing kin of lesser value to them. For instance, workers of the mound-building For mica exsecta eliminate male brood in colonies headed by a single-mated queen. By combining an inclusive fitness model and empirical data, we investigated the selective causes underlying these fratricides. Our model examines until which threshold stage in male brood development do the workers benefit from eliminating males to rear extra females instead. We then determined the minimal developmental stage reached by male larvae before elimination in F. exsecta field colonies. Surprisingly, many male larvae were kept until they were close to pupation, and only then eliminated. According to our model, part of the eliminated males were so large that workers would not benefit from replacing them with new females. Moreover, males were eliminated late in the season, so that new females could no longer be initiated, because matings take place synchronously during a short period. Together, these results indicate that workers did not replace male brood with new females, but rather reduced total brood size during late larval development. Male destruction was probably triggered by resource limitation, and the timing of brood elimination suggests that males may have been fed to females when these start to grow exponentially during the final larval stage. Hence, the evolution of fratricides in ants is best explained by a combination of ecological, demographic and genetic parameters.
Resumo:
We compare the primary sex ratio (proportion o haploid eggs laid by queens) and the secondary sex ratio (proportion of male pupae produced) in the Argentine ant Iridomyrmex humilis with the aim of investigating whether workers control the secondary sex ratio by selectively eliminating male brood. The proportion of haploid eggs produced by queens was close to 0.5 in late winter, decreased to less than 0.3 in spring and summer, and increased again to a value close to 0.5 in fall. Laboratory experiments indicate that temperture is a proximate factor influencing the primary sex ratio with a higher proportion of haploid eggs being laid at colder temperatures. Production of queen pupae ceased in mid-June, about three weeks before that of male pupae. After this time only worker pupae were produced. During the period of production of sexuals, the proportion of male pupae ranged from 0.30 to 0.38. Outside this period no males were reared although haploid eggs were produced all the year round by queens. Workers thus exert a control on the secondary sex ratio by eliminating a proportion of the male brood during the period of sexual production and eliminating all the males during the remainder of the cycle. These data are consistent with workers preferring a more female-biased sex ratio than queens. The evolutionary significance of the production of male eggs by queens all the year round is as yet unclear. It may be a mechanism allowing queen replacement in the case of the death of the queens in the colony.
Resumo:
Dichroplus maculipennis and Borellia bruneri are two of the 18 grasshopper species of actual or potential economic relevance as pests in Argentina. The objective of this study was to estimate the sex ratios for adults and older nymphs of D. maculipennis and B. bruneri in the field, and analyze possible temporal variations. The study was conducted during seven seasons (2005-06 to 2011-12) in representative plant communities of the southern Pampas region. A total of 4536 individuals of D. maculipennis, and 6038 individuals of B. bruneri were collected. The sex ratio registered in older nymphs for D. maculipennis and B. bruneri did not deviate from a 1:1 ratio (p > 0.05), suggesting that these species have such a primary sex ratio. However, a significant bias in sex composition in adults of both species was observed (p < 0.05). The sex ratio in adults of D. maculipennis was different in five of the 18 sampling dates carried out. In three sampling dates it was biased toward males, while in the other two it was biased toward females. Taking into account the sex ratio by sampling season, significant differences were recorded in two seasons. In 2007-08 the sex ratio was biased toward males (1 F:2.26 M), while in 2008-09 it was biased toward females (1.35 F:1 M). The sex ratio in adults of B. bruneri was always biased toward males (p < 0.05). We conclude that results obtained in this study indicate that various factors like differential survival, dispersion, predation, among others, could have modified the primary sex ratio in these species.
Resumo:
This publication is a guide for parents and guardians of teenagers learning to drive. It should be used with the Iowa Driver’s Manual to aid you in instructing your new driver about how to safely and responsibly operate a motor vehicle. Since the task of driving is affected by changing conditions, this manual does not attempt to cover all situations that may arise. Under Iowa’s graduated driver licensing system young drivers must complete 20 hours of supervised drive time with their parents or guardians during the instruction permit stage and 10 hours during the intermediate license stage. Even though your teenager is taking or has completed driver education in school, there is a great deal of benefit to be obtained from you providing this additional practice time. Learning from your experience and under your guidance, your teenager will apply the rules of the road and more fully understand the risks involved in driving. This will require time and patience on your part, but the effort will result in you knowing that your teenager will be better able to cope with the demands of safe driving. In the back of this manual you will find several pages of diagrams. Use these diagrams to illustrate different driving situations for your teenage driver. Consider taking a notepad and pencil along during your practice sessions for additional drawings. This manual also contains a chart to log your supervised drive time. As your new driver advances through the graduated system you will be required to certify to an Iowa driver’s license examiner that you completed the minimum number of hours of supervised drive time. By becoming involved in the learning driver’s educational process, you are contributing to Iowa’s overall highway safety effort and helping your teenager develop safe driving habits that will last a lifetime.
Resumo:
Comparative genomic studies are revealing that, in sharp contrast with the strong stability found in birds and mammals, sex determination mechanisms are surprisingly labile in cold-blooded vertebrates, with frequent transitions between different pairs of sex chromosomes. It was recently suggested that, in context of this high turnover, some chromosome pairs might be more likely than others to be co-opted as sex chromosomes. Empirical support, however, is still very limited. Here we show that sex-linked markers from three highly divergent groups of anurans map to Xenopus tropicalis scaffold 1, a large part of which is homologous to the avian sex chromosome. Accordingly, the bird sex determination gene DMRT1, known to play a key role in sex differentiation across many animal lineages, is sex linked in all three groups. Our data provide strong support for the idea that some chromosome pairs are more likely than others to be co-opted as sex chromosomes because they harbor key genes from the sex determination pathway.