992 resultados para Series de Dirichlet
Resumo:
The present paper reports the methods for preparing and isolating 8 kinds of 1:12 molybdenum series of heteropoly blue complexes KyHzXMo12O40 . nH2O (X=Si, P, As, Ge). The products were characterized by elemental analyses, potential titration, polarograms, cyclic voltammetry, IR spectra, visible-UV spectra, X-ray powder diffraction, XPS and P-31 NMR. The single crystal structure of 4-electron molybdenum-silicon heteropoly blue was measured and the positions of reduced molybdenum atoms were determined, i.e. they were located at Mo(3), Mo(7), Mo(8) and Mo(10). The experimental results show that the heteropoly blue remains Keggin structure. ESR spectra of heteropoly blue solids were first studied, from which it was found that the delocalization extent of 2-electron heteropoly blue and 4-electron heteropoly blue is smaller than that of 1-electron heteropoly blue. The study of thermal properties shows that the thermal stability increases with the increase of the reduction extent of heteropoly blue. The study of redox properties shows that the oxidizing power order of heteropoly blue changes in different mediums, and the polarographic half-wave voltage is found to be dependent on the electronegativity of the hetero atom linearly. It is found that the phosphorus heteropoly blue and arsenic heteropoly blue show a strong anti-acid property.
Resumo:
The angular overlap model (AOM) is applied to 4f6 electron systems. The crystal field parameters are interpreted and covalency between 4f electrons and ligands is investigated based on the experimental energy levels. For Eu3+:Ln2O2S (Ln = Lu, Y, Gd, La) crystal series, we adopt two computational schemes. First of all, we assume that the distances to all ligands are equal, and then the distances to all ligands are divided into two groups, namely, oxygens as one group, sulfurs as the other. Of course, much information about covalency will be obtained from the latter case. Obviously, our results show that the covalency of Ln-O bonding is stronger than that of Ln-S bonding in line with much shorter bondlength for the former than that for the latter. The two schemes yield the same results, that is, for sigma and pi bonding, ligands are strong donors as well as sigma, pi effects are dominant over delta, phi effects.
Resumo:
The geochemical and U-series isotopic characteristics of hydrothermal sulfide samples from the Jade site (127A degrees 04.5'E, 27A degrees 15'N, water depth 1300-1450 m) at Jade site in the Okinawa Trough were analyzed. In the hydrothermal sulfide samples bearing sulfate (samples HOK1 and HOK2), the LREEs are relatively enriched. All the hydrothermal sulfide samples except HOK1 belong to Zn-rich hydrothermal sulfide. In comparison with Zn-rich hydrothermal sulfides from other fields, the contents of Zn, Pb, Ag, Cd, Au and Hg are higher, the contents of Fe, Al, Cr, Co, Ni, Sr, Te, Cs, Ti and U lower, and the Pb-210 radioactivity ratios and Pb-210/Pb ratios very low. In the hydrothermal sulfide mainly composed of sphalerite, the correlations between rare elements Hf and U, and Hf and Mn as well as that between dispersive elements Ga and Zn, are strongly positive; also the contents of Au and Ag are related to Fe-sulfide, because the low temperature promotes enrichment of Au and Ag. Meanwhile, the positive correlations between Fe and Bi and between Zn and Cd are not affected by the change of mineral assemblage. Based on the Pb-210/Pb ratios of hydrothermal sulfide samples (3.99x10(-5)-5.42x10(-5)), their U isotopic composition (U-238 content 1.15-2.53 ppm, U-238 activity 1.07-1.87 dpm/g, U-234 activity 1.15-2.09 dpm/g and U-234/U-238 ratio 1.07-1.14) and their Th-232 and Th-230 contents are at base level, and the chronological age of hydrothermal sulfide at Jade site in the Okinawa Trough is between 200 and 2000 yr.
Resumo:
Based on Th-230-U-238 disequilibrium and major element data from mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs), this study calculates mantle melting parameters, and thereby investigates the origin of Th-230 excess. (Th-230/U-238) in global MORBs shows a positive correlation with Fe-8, P (o), Na-8, and F-melt (Fe-8 and Na-8 are FeO and Na2O contents respectively after correction for crustal fractionation relative to MgO = 8 wt%, P (o)=pressure of initial melting and F (melt)=degree of melt), while Th-230 excess in OIBs has no obvious correlation with either initial mantle melting depth or the average degree of mantle melting. Furthermore, compared with the MORBs, higher (Th-230/U-238) in OIBs actually corresponds to a lower melting degree. This suggests that the Th-230 excess in MORBs is controlled by mantle melting conditions, while the Th-230 excess in OIBs is more likely related to the deep garnet control. The vast majority of calculated initial melting pressures of MORBs with excess Th-230 are between 1.0 and 2.5 GPa, which is consistent with the conclusion from experiments in recent years that D (U)> D (Th) for Al-clinopyroxene at pressures of > 1.0 GPa. The initial melting pressure of OIBs is 2.2-3.5 GPa (around the spinel-garnet transition zone), with their low excess Ra-226 compared to MORBs also suggesting a deeper mantle source. Accordingly, excess Th-230 in MORBs and OIBs may be formed respectively in the spinel and garnet stability field. In addition, there is no obvious correlation of K2O/TiO2 with (Th-230/U-238) and initial melting pressure (P (o)) of MORBs, so it is proposed that the melting depth producing excess Th-230 does not tap the spinel-garnet transition zone. OIBs and MORBs in both (Th-230/U-238) vs. K2O/TiO2 and (Th-230/U-238) vs. P (o) plots fall in two distinct areas, indicating that the mineral phases which dominate their excess Th-230 are different. Ce/Yb-Ce curves of fast and slow ridge MORBs are similar, while, in comparison, the Ce/Yb-Ce curve for OIBs shows more influence from garnet. The mechanisms generating excess Th-230 in MORBs and OIBs are significantly different, with formation of excess Th-230 in the garnet zone only being suitable for OIBs.
Resumo:
Mid-ocean ridge basalt (MORB) samples from the East Pacific Rise (EPR 12 degrees 50'N) were analyzed for U-series isotopes and compositions of plagioclase-hosted melt inclusions. The Ra-226 and Th-230 excesses are negatively correlated; the Ra-226 excess is positively correlated with Mg# and Sm/Nd, and is negatively correlated with La/Sm and Fe-8; the Th-230 excess is positively correlated with Fe-8 and La/Sm and is negatively correlated with Mg# and Sm/Nd. Interpretation of these correlations is critical for understanding the magmatic process. There are two models (the dynamic model and the "two-porosity" model) for interpreting these correlations, however, some crucial parameters used in these models are not ascertained. We propose instead a model to explain the U-series isotopic compositions based on the control of melt density variation. For melting either peridotite or the "marble-cake" mantle, the FeOt content, Th-230 excess and La/Sm ratio increases and Sm/Nd decreases with increasing pressure. A deep melt will evolve to a higher density and lower Mg# than a shallow melt, the former corresponds to a long residence time, which lowers the Ra-226 excess significantly. This model is supported by the existence of low Ra-226 excesses and high Th-230 excesses in MORBs having a high Fe-8 content and high density. The positive correlation of Ra-226 excess and magma liquidus temperature implies that the shallow melt is cooled less than the deep melt due to its low density and short residence time. The correlations among Fe-8, Ti-8 and Ca-8/Al-8 in plagioclase-hosted melt inclusions further prove that MORBs are formed from melts having a negative correlation in melting depths and degrees. The negative correlation of Ra-226 excess vs. chemical diversity index (standard deviation of Fe-8, Ti-8 and Ca-8/Al-8) of the melt inclusions is in accordance with the influence of a density-controlled magma residence time. We conclude that the magma density variation exerts significant control on residence time and U-series isotopic compositions. (c) 2010 Elsevier B.V. All rights reserved.
Sulphide sulphur and carbonate carbon isotopic evolution of the Cambrian Series 2 and 3, South China